
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 14, Number 1, 2011, 20–30

Spiking Neural P Systems
with Anti-Spikes as Transducers

Venkata Padmavati METTA1,
Kamala KRITHIVASAN2, Deepak GARG3

1Bhilai Institute of Technology, Durg, India
2Indian Institute of Technology, Chennai, India

3Thapar University, Patiala, India

Abstract. In this paper, we consider spiking neural P systems with anti-

spikes. Because of the use of two types of objects, the system can encode the

binary digits in a natural way and hence represent the formal models more

efficiently and naturally than the standard SN P systems. This work deals

with the computing power of spiking neural P system with anti-spikes. It is

demonstrated that, as transducers, spiking neural P systems with anti-spikes can

simulate any Boolean circuit and also computing devices such as finite automata

and finite transducers. We also investigate how the use of anti-spikes in spiking

neural P systems affect the capability to solve the satisfiability problem.

1. Introduction

Spiking neural P systems [3] (shortly called SN P systems) are parallel and dis-
tributed computing models inspired by the neurophysiological behaviour of neurons
sending electrical pulses of identical voltages called spikes to the neighbouring neurons
through synapses. A standard SN P system is represented as a directed graph where
nodes correspond to the neurons having spiking and forgetting rules that involve the
spikes present in the neuron in the form of occurrences of a symbol a. The arcs indi-
cate the synapses among the neurons. The spiking rules are of the form E / ar → a
and are used only if the neuron contains n spikes such that an ∈ L(E) and n≥ r,
where L(E) is the language represented by the regular expression E. In this case r
spikes are consumed and one spike is sent out. When neuron σi sends a spike, it is
replicated in such a way that one spike is immediately sent to all neurons σj such



Spiking Neural P Systems with Anti-Spikes as Transducers 21

that (i, j) ∈ syn, where syn is the set of arcs between the neurons. The transmission
of spikes takes no time, the spike will be available in neuron σj in the next step. The
forgetting rules are of the form as → λ and are applied only if the neuron contains
exactly s spikes. The rule simply removes s spikes. For all forgetting rules, s must
not be the member of L(E) for any firing rule within the same neuron. A neuron is
bounded if for every firing rule E / ar → a, E denotes a finite regular expression. An
SN P system is called bounded if all the neurons in the system are bounded.

SN P systems with anti-spikes (for short, SN PA systems) introduced in [7], are
a variant of SN P systems containing two types of objects, spikes (denoted by a)
and anti-spikes (denoted by a), corresponding somewhat to inhibitory impulses from
neurobiology. The anti-spikes behave in a similar way as spikes by participating
in spiking and forgetting rules. They are produced from usual spikes by means of
usual spiking rules; in turn, rules consuming anti-spikes can produce spikes (here we
avoid the rules producing anti-spikes from anti-spikes). An SN P system with anti-
spikes also contains an implicit annihilation rule of the form aa → λ; if an anti-spike
and a spike meet in a given neuron, they annihilate each other. This rule has the
highest priority and does not consume any time. The initial configuration of the
system is represented by the number of spikes/anti-spikes present in each neuron. A
computation halts if it reaches a configuration where no rule can be used. There are
various ways of using such a device: as an acceptor, generator, transducer [2].

In the generative mode, the system has no input neurons and one of the neurons
is considered to be the output neuron, and its spikes are sent to the environment.
The moments of time when spikes are emitted by the output neuron are marked with
1, the moments when anti-spikes are emitted are marked with 0 and no output steps
are ignored. The binary sequence obtained in this way is called the spike train of the
system. The binary strings describing the spike trains of the halting computations are
taken as the language generated by the system. It was shown in [5] that some regular
languages cannot be generated by spiking neural P systems with a bounded number
of spikes in the neurons. As an SN PA system allows non-determinism between the
rules ac → a and ac → a, c ≥ 1, we can construct SN PA systems generating more
languages than SN P systems [8].

When both input and output neurons are considered, the system can be used as a
transducer, both for strings and infinite sequences, as well as for computing numerical
functions. Spikes can be introduced in the input neuron, at various steps, while the
spikes of the output neuron are sent to the environment. A binary sequence is asso-
ciated with the spikes/anti-spikes entering or exiting the system. In the transducer
mode, a large class of (Boolean) functions can be computed.

Standard spiking neural P systems in transducer mode can simulate the Boolean
circuits [4], with two spikes sent out of the system encoded as 1 and one spike as
0. In this paper we use SN P systems with anti-spikes to simulate logic gates, with
the anti-spikes and spikes encoding the Boolean values 0 and 1 in the natural way.
We design SN P systems with anti-spikes simulating the operations of AND, OR and
NOT gates. The output of the system is 0 (hence false) if the output neuron sends out
an anti-spike and 1 (true) if a spike is sent to the environment. Hence we present a
way to simulate any Boolean circuit using these fundamental gates and synchronising



22 V. P. Metta et al.

SN P system with anti-spikes to establish synchronization among the gates to output
the correct result.

In [1], a uniform solution to the SAT (in CNF, with n variables and m clauses) is
provided using standard SN P systems without delay having 3n2 + 8m + 5 neurons,
providing the solution in a number of steps which is linear in the number of variables.
Two bits were used to code each literal of a clause, hence the computation cannot
end in less than 2n steps. Here we use only one bit to code each literal of clause Cj .
1 indicates the case when xi appears in Cj , 0 indicates the case when ¬xi appears in
Cj and λ (empty) indicates the absence of xi in the clause Cj . So n bits are needed
to code any clause. Using SN PA systems the number of steps can be reduced to half.
These systems only requires 3m+ 2 neurons.

In this paper we first formally define SN PA systems. These are then used to
construct Boolean circuits. Furthermore they are used to simulate computational
devices such as finite state transducers. Finally we show how they can be used for
solving the SAT problem.

2. Spiking Neural P System with Anti-Spikes

First we recall the definition of SN P systems with anti-spikes.

Definition 2.1. (SN P systems with anti-spikes) A spiking neural P system with
anti-spikes, of degree m ≥ 1, is a construct

Π=(O, σ1, σ2, σ3 ,· · · , σm , syn , in, out), where

1. O = { a, a } is the binary alphabet. a is called spike and a is called anti-spike.

2. σ1, σ2, σ3 ,· · · , σm are neurons, of the form

σi=(αi, Ri) , 1 ≤ i ≤ m, where

(a) αi = ani or αi = āni , where ni is the number of spikes or anti-spikes,
respectively, contained in the neuron σi.

(b) Ri is a finite set of rules of the following two forms:

i. E/br → b′ where E is a regular expression over a or a , while b, b′ ∈
{a, a}, and r ≥1.

ii. bs → λ,where λ is the empty word and s ≥ 1, and for all E/br → b′

from Ri, b
s /∈ L(E) where L(E) is the language defined by E.

3. syn ⊆ { 1, 2, 3, · · · , m} × { 1, 2, 3, · · · , m} with (i, i) /∈ syn for 1 ≤ i ≤ m
(synapses among cells);

4. in, out ∈ {1, 2, 3, · · · ,m} are the input and output neurons respectively.



Spiking Neural P Systems with Anti-Spikes as Transducers 23

The rules of type E/br → b′ are spiking rules, and they are used only if the neuron
contains n b’s such that bn ∈ L(E) and n ≥ r. When neuron σi sends b

′ (spike/anti-
spike), it is replicated in such a way that one spike/anti-spike is sent to all neurons
σj such that (i, j) ∈ syn.

The rules of type bs → λ are forgetting rules; s spikes/anti-spikes are simply
removed (“forgotten”) when applying the rule. Like in the case of spiking rules, the
left hand side of a forgetting rule must “cover” the contents of the neuron, that is,
as→ λ is applied only if the neuron contains exactly s spikes or anti-spikes.

A spike/anti-spike emitted by neuron i will pass immediately to all neurons σj

such that (i, j) ∈ syn. That means transmission of spikes/anti-spikes takes no time,
the spikes/anti-spikes will be available in neuron σj in the next step. There is an
additional fact that a and a cannot stay together, they annihilate each other. If a
neuron has either objects a or objects a, and further objects of either type (maybe
both) arrive from other neurons, such that we end with ar and as inside, then im-
mediately an annihilation rule a a → λ (which is implicit in each neuron), is applied
in a maximal manner, so that either ar−s or as−r remain for the next step, provided
that r ≥ s or s ≥ r, respectively. This mutual annihilation of spikes and anti-spikes
takes no time and the annihilation rule has priority over spiking and forgetting rules,
so each neuron always contains either only spikes or anti-spikes. Like in [7], we avoid
using rules ac → a, but not the other three types, corresponding to the pairs (a, a),
(a, a), (a, a). If we have a rule E/br → b′ with L(E) = {br}, then we write it in the
simplified form br → b′.

The configuration of the system is described by C = ⟨β1, β2, · · · , βm⟩ where βi is
the multiset written in the form βi = axay, where x is the number of spikes and y is
the number of anti-spikes present in neuron σi and either x = 0 or y = 0. The initial
configuration is C0 = ⟨α1, α2, · · · , αm⟩.

A global clock is assumed and in each time unit, each neuron which can use a rule
should do it (the system is synchronized), but the work of the system is sequential
locally: only (at most) one rule is used in each neuron except the annihilation rule
which fires maximally with highest priority. For example, if a neuron σi has two firing
rules, E1/a

r → a and E2/a
k → a with L(E1) ∩ L(E2) ̸= ϕ, then it is possible that

each of the two rules can be applied, and in that case only one of them is chosen non-
deterministically. Thus, the rules are used in the sequential manner in each neuron,
but neurons function in parallel with each other. In each step, all neurons which can
use a rule of any type, spiking or forgetting, have to evolve, using a rule.

Using the rules in this way, we pass from one configuration of the system to another
configuration; such a step is called a transition. For two configurations C and C′ of Π
we denote by C =⇒ C′, if there is a direct transition from C to C′ in Π.

A computation of Π is a finite or infinite sequence of transitions starting from the
initial configuration, and every configuration appearing in such a sequence is called
reachable. A computation halts if it reaches a configuration where no rule can be
used. Let γ = C0 =⇒ C1 =⇒ · · · =⇒ Ck be an halting computation. Let us denote by
bin(γ) the string b1b2 · · · bk where bi ∈ {0, 1} and bi = 1 iff the output neuron of the
system Π sends a spike into the environment in the step i of γ, bi = 0 iff it sends an
anti-spike, and bi = λ if the step i generated no output. We denote by B the binary



24 V. P. Metta et al.

alphabet {0, 1} and by COM(Π), the set of all halting computations of Π. Moreover,
we define the language generated by Π by L(Π) = {bin(γ)|γ ∈ COM(Π)}.

When both the input and output neurons are considered, the system can be used as
transducer. In each step of computation, each input neuron takes the input from the
environment, while the output neuron produces the output to the environment. The
input and output are spikes (representing binary digit 1) or anti-spikes (representing
binary digit 0). We want to emphasize that no rule of the form ac → a is used here.

3. Simulating Logic Gates

In this section we simulate the logic gates using SN P systems with anti-spikes in
transducing mode.

Lemma 1. Boolean AND and OR gates can be simulated by SN PA systems with
three neurons in two steps.

Proof. We construct an SN PA system with three neurons as in Fig. 1. The SN PA
system has two input neurons to take the input values and one output neuron to pro-
duce the output. A spike/anti-spike is introduced in each input neuron corresponding
to input 1/0.

If we introduce an anti-spike (0) into each of the input neurons, the anti-spike
becomes a spike and sent to the output neuron in the next stage. So the output neuron
gets two spikes from the input neurons and it already has a spike, accumulating a
total of three spikes and fires using a rule a3 → a sending an anti-spike (0) to the
environment. But if we introduce a spike into each of the input neurons, the output
neuron gets two anti-spikes and gets annihilated with a spike already present in it,
remains with an anti-spike and fires using a rule a → a producing a spike.

Fig. 1. SN P system with anti-spikes simulating AND gate.

In the third case, if a spike is introduced into one of the input neurons and an
anti-spike into another, then they get annihilated after reaching the output neuron.
So the output neuron has its one spike and fires using the rule a → a sending an
anti-spike to the environment. We can observe that it is simulating the AND gate
correctly.

If we replace the rule a → a with a → a in the output neuron of the above system,
we obtain the SN PA system for an OR gate. �



Spiking Neural P Systems with Anti-Spikes as Transducers 25

Lemma 2. The Boolean NOT gate can be simulated by an SN PA system with
two neurons in two steps.

Proof. The SN P system with anti-spikes simulating the NOT gate is depicted in
Fig. 2. For synchronisation with OR and AND gates we added an output neuron so
that output is produced after two steps. (Otherwise, the simulation is very simple,
we can implement the gate with only one neuron in one step.)

Fig. 2. SN P system with anti-spikes simulating NOT gate.

If an anti-spike is introduced, the output neuron will have three spikes in the next
step and fires using the rule a3 → a, sending a spike. If a spike is introduced, it gets
complemented in the input neuron and annihilates with a spike in the output neuron
in the next step. So the output neuron has only one spike and produces an anti-spike
using the rule a → a. Thus the NOT gate complements the input. �

4. Simulating Circuits

Here, we present the way to simulate any Boolean circuit using the AND, OR
and NOT gates constructed in the previous section. But there is a need to construct
synchronising module to ensure the synchronization among the gates.

Consider the following example ¬(x1 ∧ x2) ∨ (x3 ∧ x4).
We use the SN P systems with anti-spikes for AND, OR and NOT gates. Let them
be ΠAND, ΠOR and ΠNOT . The Boolean circuit corresponding to the above formula
as well as the spiking system assigned to it are depicted in Fig. 3.

In order for the system that simulates the circuit to output the correct result it
is necessary for each sub-system (that simulates the gates AND, OR and NOT) to
receive the input from the above gate(s) at the same time. To this aim, we have
to add a synchronizing SN P system ΠSY N as in Fig. 4. Generalizing the previous
observations the following result holds:

Theorem 1. Every Boolean circuit, whose underlying graph structure is a rooted
tree, can be simulated by an SN PA system constructed from SN PA systems of types
AND, OR and NOT by reproducing in the architecture of the SN PA system, the
structure of the tree associated with the circuit.



26 V. P. Metta et al.

Fig. 3. Boolean circuit and corresponding SN P system

with anti-spikes for ¬(x1 ∧ x2) ∨ (x3 ∧ x4).

Fig. 4. Synchronizing SN P system with anti-spikes.

5. Computing with SN PA systems

As is shown below, SN PA systems can simulate in a direct manner several types of
computing devices based on finite state transitions. The spike trains from the output
neuron represent the language L(Π) generated by the SN PA system Π. The following
result is shown in [8].

Theorem 2. Any regular language L over {0, 1} can be expressed as L = L(Π)
for some SN PA system Π.

5.1. Simulating finite state transducers

Let S = (Q,Σ,∆, δ, µ, q1, F ) be a deterministic finite state transducer with binary
input and output, where Σ = ∆ = {0, 1}, Q = {q1, · · · , qn}, q1 is the initial state, δ
is the transition function that maps Q × Σ → Q and µ is the output function from
Q× Σ → ∆.
We demonstrate that S can be simulated by an SN PA system.
Consider the following SN PA system:
ΠS=({a, a}, σ1, σ2, · · · , σ3n+1, syn , 3n+ 1, 3n+ 1), with
σi = (a, {a → a, a → a }), i = 1, 2, · · · , 3n,
σ3n+1 = (a3(n+1), {a3(n+i)+1/a3(n+i−j)+1 → b′ | δ(qi, 1) = (qj , b)}∪
{a3(n+i)−1/a3(n+i−j)−1 → b′ | δ(qi, 0) = (qj , b)}) where b ∈ {0, 1} and b′ = a if b = 1



Spiking Neural P Systems with Anti-Spikes as Transducers 27

and b′ = a if b = 0, syn is the set of pairs (i, 3n+ i), (3n+ i, i) with 1 ≤ i ≤ 3n.
The system is given in a pictorial way in Fig. 5. Note that n is the number of states,
and that for each 1 ≤ i ≤ n, qi in Q is represented by a3(n+i). The number of spikes
a3(n+i) in neuron σ3n+1 is referred to (or identified) as a state of ΠS . The manner of
constructing ΠS is a modification of the one presented using extended SN P systems
in [6].

Fig. 5. An SN PA system simulating a transducer.

This system works as follows. Initially, the neuron σ3n+1 contains 3(n+ 1) spikes
which corresponds to the initial state q1. Suppose that, in any step, neuron σ3n+1

contains a3(n+i)(representing state qi) and is ready to receive input a or a (representing
1 or 0 respectively) from environment. Depending on whether the input is a spike or
anti-spike, neuron σ3n+1 can fire and emit a spike(if b′ = 1) or anti-spike(if b′ = 0)
to environment by consuming 3(n + i − j) + 1 or 3(n + i − j) − 1 spikes leaving 3j
spikes. It receives 3n spikes from neurons 1 to 3n accumulating a total of 3(n + j)
spikes (representing qj). Hence, one state transition δ(qi, b) = (qj , b

′) is simulated.
This action is repeatedly performed in a number steps equal to the input length.
When the system stops receiving the input, the neuron σ3n+1 will have a number of
spikes which is a multiples of 3, hence the system halts. Thus, (with one step delay)
for a given input w = bi1bi2 · · · bir in {0, 1}∗, the SN PA system ΠS produces an
output y = µ(qi1 , bi1)µ(qi2 , bi2) · · ·µ(qir , bir ) in {0, 1}∗, where the sequence of states:
z = qi1qi2 · · · qir such that δ(qij , bij ) = qij+1 for j = 1, 2, · · · , r − 1 and qi1 = q1.
We denote the output by y = ΠS(w) and the sequence of states by z = ΠSq(w).
A transducer S defines a function w → S(w), hence simulating S means that if
y = S(w), then y = ΠS(w). Then it holds that y is generated by S (i.e., δ(q1, w) ∈ F )
iff z = ΠSq(w) ends up with a final state in F (i.e., qir is in F ). We now define the
language generated by ΠS as N (ΠS) = {y ∈ {0, 1}∗ | w ∈ {0, 1}∗, y = ΠS(w) and
ΠSq(w) is in Q∗F}.
Thus, the following theorem holds:



28 V. P. Metta et al.

Theorem 3. Any finite state transducer S can be simulated by some SN PA
system ΠS.

6. Solving SAT with SN PA systems

An instance of SAT is a Boolean formula in CNF γ = C1 ∧ C2 ∧ · · · ∧ Cm, i.e.,
a conjunction of clauses Cj , 1 ≤ j ≤ m. Each clause is a disjunction of literals,
i.e., occurrences of xi or ¬xi, built on the finite set X = {x1, x2, · · · , xn} of Boolean
variables. In what follows, we will require that no repetitions of the same literal
may occur in any clause; in this way, a clause can be seen as a subset of all possible
literals. An assignment of the variables x1, x2, · · · , xn is a mapping s : X → {0, 1}n
that associates to each variable a truth value. The number of all possible assignments
to the variables of X is 2n. We say that Boolean formula γ is satisfiable if there
exists an assignment of truth values to all the variables which occur in γ such that
evaluation of γ gives 1 (true) as a result. The problem of SAT takes an arbitrary
Boolean formula γ as input and asks if γ is satisfiable.

An SN PA system that solves the SAT problem in a non-deterministic uniform way
is given in Fig. 6. The system has one module for each clause. As the construction is
uniform, we code each clause Cj , 1 ≤ j ≤ m, of the given instance of SAT as follows:
1 indicates the case when xi appears in Cj , 0 indicates the case when ¬xi appears
in Cj and λ (empty) indicates the absence of xi in the clause Cj . That means that
a spike, an anti-spike or no input (λ) are to be introduced in the input neurons of
the system from the second step onwards and the output neuron emits a spike, if the
given instance of SAT has a solution, otherwise sends an anti-spike.

Fig. 6. An SN PA system solving SAT.

Actually, we consider m input neurons, one for each clause, and in each of them we
introduce a sequence of n bits 1, 0 and λ (a spike, anti-spike or no input is sent inside



Spiking Neural P Systems with Anti-Spikes as Transducers 29

in the steps corresponding to the occurrence of 1,0 and λ respectively), describing the
situation of each variable x1, · · · , xn with respect to the corresponding clause.

For instance, for the formula
γ = (¬x1 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3)
we have two input neurons, the first one receiving the spike train 0λ10, and the second
one receiving the spike train λ10λ. Note the important fact that introducing the input
takes only n steps. A module Yj exists for each clause Cj , 1 ≤ j ≤ m. Each module
has a synapse going to the output neuron σout.

Neurons σc and σb are common to all modules; a synapse exists from σc to σb and
from σb to all neurons σdj of modules Yj . Neuron σc provides a spike to neuron σb

in each step for n − 1 steps. The neuron σb non-deterministically produces a truth-
assignment for the variables x1, · · · , xn, using the choice between rules a → a and
a → a. The spike needed for the truth assignment of x1 is initially present in the
neuron σb, while it gets the spike in each step for the next n − 1 variables from the
neuron σc.

An anti-spike coming out of σb is interpreted as the value false assigned to xi, and
a spike is interpreted as the value true assigned to xi. Therefore, σdj receives either
an anti-spike or a spike from the neuron σb, and the spikes which codify the type of
presence of xi in clause Cj (no occurrence, negated, not negated).

In order to synchronize the checking performed in neurons σdj , i.e., to bring here
the truth assignment of variable xi in the moment when the code of the presence of
xi in Cj arrives in this neuron, we use the neuron σc that supply spikes to neuron
σb in each step for next n − 1 steps. In each step beginning with the second step,
all neurons σdj receive both the truth assignment of xi and the code of the way xi is
related with Cj .

As one can see from the previous explanations, in each step 2, 3, · · · , n+1, neurons
σdj , 1 ≤ j ≤ m, receive a number of spikes/anti-spikes as follows:
1 anti-spike if xi = false and xi does not appear in Cj ;
1 spike if xi= true and xi does not appear in Cj ;
no spikes/anti-spikes if xi= false and xi appears in Cj ;
2 spikes if xi= true and xi appears in Cj ;
2 anti-spikes if xi = false and ¬xi appears in Cj ;
no spikes/anti-spikes if xi= true and ¬xi appears in Cj

Thus, the rules of σdj produce a spike only in the case when the clause Cj becomes
true for the corresponding truth assignment of variable xi. This spike reaches neurons
σej . Each neuron σej has already n spikes and fires using the rule an+1 → a. The use
of neuron ej ensures the fact that σout receives at most one spike from each module
Yj , namely, only if clause Cj has been satisfied. All neurons σej , 1 ≤ j ≤ m, are
linked by a synapse to the output neuron σout. The neuron σout spikes (in step n+3)
using a rule am → a only if the truth assignment produced non-deterministically by
modules Yj satisfies the formula γ.

It should be noted that the number of neurons of the system constructed above
is 2m + 3, and that the computation takes a number of steps which is linear in n.
Note that without anti-spikes [1] the solution requires double the number of steps and
3n2 + 8m+ 5 neurons.



30 V. P. Metta et al.

7. Conclusion

In this paper, we have examined the computational efficiency of SN PA systems
used as transducers. We show that the idea of encoding 1 as spike and 0 as anti-spike
proves to be very efficient in simulating Boolean circuits, finite state transducers and
solving NP-complete problems. We designed SN P systems simulating the operations
of AND, OR and NOT gates. This motivates the modelling of CPU with SN P system
with anti-spikes. We show that any instance of SAT in CNF, with n variables and m
clauses is solved in a non-deterministic way with the number of neurons polynomial in
m. Finally, investigating other computational complexity issues within this framework
remains as a research topic of interest.

References

[1] Leporati A., Mauri G., Zandron C., Păun Gh., Pérez-Jiménez M. J., Uniform
Solutions to SAT and Subset-Sum by Spiking Neural P Systems, Nat. Comput., 8 (4),
pp. 681–702, 2008.

[2] Pǎun Gh., Spiking Neural P Systems Used as Acceptors and Transducers, CIAA, LNCS,
4783, pp. 1–4, 2007.

[3] Ionescu M., Pǎun Gh., Yokomori T., Spiking Neural P Systems, Fundamenta Infor-
maticae, 71 (2-3), pp. 279–308, 2006.

[4] Ionescu M., Sburlan D., Some Applications of Spiking Neural P systems, J. of Com-
puting and Informatics, 27, pp. 515–528, 2008.

[5] Ibarra O. H., Woodworth S., Characterizations of Some Classes of Spiking Neural
P Systems, Nat. Comput., 7, pp. 499–517, 2008.

[6] Ibarra O. H., Pérez-Jiménez M. J., Yokomori T., On Spiking Neural P Systems,
Nat. Comput., 9 (2), pp. 475–491, 2009.

[7] Pan L., Pǎun Gh., Spiking Neural P Systems with Anti-Spikes, Int. J. of Computers,
Communications and Control, 4 (3), pp. 273–282, 2009.

[8] Metta V. P., Krithivasan K., Garg D., On String Languages Generated by Spiking
Neural P Systems with Anti-Spikes, Intern. J. Found. Computer Sci., 22 (1), pp. 15–27,
2011.


