ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 18, Number 2, 2015, 126-143

Minimum Spanning Tree Algorithm
on MapReduce One-Chip Architecture

Voichita MAICAN

DCAE Department, Politehnica University of Bucharest, Romania
E-mail: voichita.dragomir@upb.ro

Abstract. A parallel algorithm for minimum spanning tree and its im-
plementation on a one-chip many-core structure with a MapReduce architecture
is presented. The generic structure’s main features and performances are de-
scribed, but also new general purpose features added for upgrading the existing
generic structure in order to perform better in running the proposed algorithms.
As the developed algorithm uses the representation of the graph as a matrix,
both , dense and sparse cases are considered. A Verilog based simulator is used
for evaluation. The main outcome of the presented research is that, compared
with the hyper-cube architecture (having p processors and the size in O(p log p)),
our MapReduce architecture (with p execution units and the size in O(p)) has
the same theoretical time performance: O(NlogN) for p = N = |V|. Also, the
actual energy performance of our architecture is 7 p.J for 32-bit integer operation,
compared with the ~ 150 pJ per operation of the current many-cores.

Key-words: parallel computing; MapReduce; many core; minimum span-
ning tree; parallel algorithm

1. Introduction

Processing large graphs is becoming increasingly important nowadays, because a
graph can be used to represent a large number of real life problems such as road net-
works, computer networks and social networks. So graph algorithms can be applied
to solve a multitude of real life problems: Computer Networks - peer to peer appli-
cations need to locate a file that the client is requesting. GPS Navigation systems
- navigation systems, which can give directions to reach from one place to another,
use shortest path algorithms; they take your location as the source node and your
destination as the destination node on the graph. (A city can be represented as a

Minimum Spanning Tree Algorithm on MapReduce One-Chip Architecture 127

graph by taking landmarks as nodes and the roads as edges). Facebook - treats each
user profile as a node on the graph and two nodes are said to be connected if they
are each other’s friends.

The graph algorithms are fundamentally the same and consists of visiting all of
the vertices and edges in the graph in a particular manner, updating and checking
their values along the way, each with it’s own optimal application.

Minimum Spanning Tree is one of these graph algorithms with lots of applica-
tions in the design of networks, including computer networks, telecommunications
networks, transportation networks, water supply networks, and electrical grids. Some
practical applications based on minimal spanning trees are: taxonomy, cluster analy-
sis, constructing trees for broadcasting in computer networks (on Ethernet networks
this is accomplished by means of the Spanning tree protocol), image registration and
segmentation, curvilinear feature extraction in computer vision, handwriting recog-
nition of mathematical expressions, circuit design (implementing efficient multiple
constant multiplications, as used in finite impulse response filters), regionalization of
socio-geographic areas (the grouping of areas into homogeneous, contiguous regions).

So far, parallel algorithms for minimum spanning tree have been implemented on
multi-core processors, which are still based on the shared-memory model (they are
limited in the number of cores, the memory size and they are non-scalable for big
data size) or distributed computing where the MapReduce approach is limited by the
latency introduced by the communication network. These two main existing parallel
structures are shown in Fig. 1.

Procl | Proc2 Mem Mem Mem
Proc3 | Proc4 Proc 1 Proc 2 Proc p
Shared Memory Interconnection Network
a. b.

Fig. 1. Main existing parallel structures: a. Multi-core architecture; b. Distributed
architecture. The most efficient interconnection network is a hyper-cube network.

The problem is that both of the existing structures have limitations:

1. the cores compete for the shared resource (the external memory) known as the
bottleneck effect in multi-core architectures

2. the individual cores have access to their own memory, in distributed architec-
tures, but there is a latency in communicating between the machines, so there
is a significant increase in energy and time use.

128 V. Maican

What is new in our approach is that we are going to use a one chip many-core
structure not on multi-core or distributed computing, which implies multi-threading
(dividing the problem into threads and processing them simultaneous on multiple
cores). This technique has its limitations due to the communication and power issues.
For example, if the interconnection network used is a hyper-cube, then the size of the
entire system belongs to O(p log p) with a latency in communication in O(log p).

There are other one-chip MapReduce approaches. For example, the Intel SCC
family. In [5] and [9] two different MapReduce applications are presented. The use
of this Intel general purpose array of processors has a much slower response because
it has no more than 48 cores (which are much too complex for solving this kind of
problem) and the MapReduce functionality is implemented in software, not hardware,
as in our case.

The architecture we work on is different than these existing ones, it is a one-chip
many-core MapReduce architecture. It is presented in the next section.

In sections three and four we preset the parallel versions for Prim’s Minimum
Spanning Tree algorithm [6] developed for this new, one-chip many-core MapReduce
architecture. Then, in the fifth section, we present the new general features and
characteristics added for upgrading this generic MapReduce architecture.

To determine the efficiency of the parallel algorithms we developed for the MapRe-
duce structure, we are comparing them to the most efficient and used parallel structure
today, the distributed hyper-cube parallel computer.

2. Generic One-Chip MapReduce Architecture

The research presented in this paper is part of a larger project having as the
main goal to tune, a generic new architecture, using the 13 “dwarfs” emphasized
in the seminal Berkeley research report on parallel computation [1]. The “dwarf”
considered in this paper is Graph traversal.

2.1. The Organization

Our one-chip many-core MapReduce structure is shown in Fig. 2. This structure
has a very short response time because of the controller and the log-depth Reduction
Module that works for many (thousands) cores. The main features of this structure
are: high degree of parallelism, the cores are small and simple, the local memory is
big enough for data mining applications [7].

The structure supports two data domains:

e the S domain: a linear array of scalars S =< sg,81,...,8,—1 > (see External
Memory in Figure 2)

e the V' domain: a linear array of vectors: the content of the vector buffer
V=<wvy,v1,...,0m—1,12 >

(see the Local Memory modules represented in Fig. 2), a two-dimension array

Minimum Spanning Tree Algorithm on MapReduce One-Chip Architecture 129

containing m p-scalar horizontal vectors distributed along the linear array of
cells:

Vo =< Zgoy -+, L0 p—1 >
v1 =< 210y, L1 p—1 >
Um—1 =< Tm-10y---,Tm—1 p—1 >

and tree special vectors:

indexVector =< 0,1,....p—1>
activeVector =< ag,a1,...,0p-1 >
accVector =< accy, accy, . .., accp—1 >

The vector indexVector is used to identify the position of each cell in the linear
array of cells. The vector active Vector is used to activate the cells. If the i-th compo-
nent of the activeVector is 1, than the i-th cell is active, i.e., the current instruction
is performed. The accumulator vector, accVector, is the vector associated to the
distributed accumulator along the array of cells.

External Memory

| Interconnection Fabric
A A A A A

Y * Y ; A4 ; Yy I
Local Local Local Local
Memory Memory Memory Memory
Map
Execution| |[Execution| [Execution| Execution|
Unit Unit Unit Unit Controller

Fig. 2. The one-chip many-core MapReduce architecture.

130 V. Maican

The previously described structure was implemented in a few versions. The last,
implemented in 2008, in 65 nm standard cells technology [8] provides the following
performances:

e 100 GOPS/Watt (Giga Operations Per Second / Watt)

e 5GOPS/mm?, while the current sequential engines (x86 architecture) have, in
the same technology:

e ~1GOPS/Watt
e ~0.25GOPS/mm?>

The size of the previously described structure is in O(p), where p is the number
of cells, while the communication latency between the array and the controller is in

O(log p).
2.2. Instruction Set Architecture

Instruction Set Architecture defines the operations performed over the two data
domains: S domain and V domain. A short description follows.

Because the structure of the MapReduce generic engine consists of two pro-
grammable parts — the Controller and the Array —, the instruction set architecture,
ISApapReduce, is a dual one:

ISAmapReduce = (ISAcontToller X ISAarray)

where:

L ISAcontroller = Ssarith&logic) SScontrol U SScommunication is the ISA associated
to the Controller, with three subsets of instructions

b ISAarray = SSarith&logic U SSspatialControl U SStransfer is the ISA associated
to the cellular array, with three subsets of instructions

In each clock cycle from the program memory of the controller a pair of instructions
is read: one from ISAconiroiier, t0 be executed by Controller, and another from
IS Aurray to be executed by Array.

The SSqrithelogic are identical in the two ISAs. The SScommunication subset con-
trols the internal communication between array and controller and the communication
of the MapReduce system with the host computer. The SSi,ansfer subset controls
the data transfer between the distributed local memory of the array and the external
memory of the system. The SS.,,tro Subset consists of conventional control instruc-
tions in a standard processor. We must pay more attention to the SSspatiaicontrol
subset used to perform the specific spatial control in an array of execution units. The
main instructions in SSspatiaicontror Subset are:

activate : all the cells of the array are activated for executing the next instructions

Minimum Spanning Tree Algorithm on MapReduce One-Chip Architecture 131

where : maintains active only the active cells where the condition cond is fulfilled;
example: where (zero) maintains active only the active cells where the accu-
mulator is zero (it corresponds to the if (cond) instruction form the SScontrol
subset)

elsewhere : activates the cells inactivated by the associated where (cond) instruc-
tion (it corresponds to the else instruction form the SSeoniror Subset)

endwhere : restores the activations existed before the previous where (zero) in-

struction (it corresponds to the endif instruction form the SS;ontro1 Subset)

2.2.1. The Instruction Structure

The instruction format for the MapReduce engine allows issuing two instructions
at a time, as follows:

mrInstruction[31:0] = {controllerInstr, arraylInstr} =
{{instr[4:0], operand[2:0], value[7:0]},
{instr([4:0], operand[2:0], value[7:0]2}}

where:

instr[4:0] : codes the instruction

operand[2:0] : codes the second operand used in instruction
value[7:0] : is mainly the immediate value or the address

The field operand[2:0] is specific for our accumulator centered architecture. It
mainly specifies the second n-bit operand, op, and has the following meanings:

val : immediate value
op = {{(n-8){valuel7]}}, valuel[7:0]1}

mab : absolute from local memory
op = mem[value]

mrl : relative from local memory
op = mem[value + addr]

mri : relative from local memory and increment
op = mem[value + addr]; addr <= value + addr

cop : immediate with co-operand — coop
op = coop

mac : absolute from local memory with co-operand op = mem[coop]
mrc : relative from local memory with co-operand op = mem[value + coop]

ctl : control instructions

132 V. Maican

where the co-operand of the array is the accumulator of the controller: acc, while the
co-operand of the controller is provided by the four outputs of reduction section of
the array:

redSum : the sum of the accumulators from the active cells:
b ace;

redMin : the minimum value of the accumulators from the active cells:
Min} ace;

redMax : the maximum value of the accumulators from the active cells:
Maz¥ acc;

redBool : the sum of the active bit from the active cells:
Eg a;
2.2.2. The Assembler Language

The assembly language provides a sequence of lines each containing an instruction
for Controller (with the prefix ¢) and another for Array. Some of the line are labeled
(LB(n), where n is a positive integer).

Example 1 The program which provides in the controller’s accumulator the sum of
indezes is:

cNOP; ACTIVATE; // activate all cells

cNOP; IXLOAD; // load the index of each cell in accumulator

cCLOAD(0) ; NOP; // controller’s accumulator <= the sum of indexes
<&

Example 2 Let us show how the spatial selection works. Initially, we have:

indexVector =<01 2 ... p-2 p-1>
activeVector

<X XX ... X X >
The following sequence of instructions will provide:

cNOP; ACTIVATE; // activeVector <= <1111 ...>

cNOP; IXLOAD; // accl[i] <= i

cNOP; VSUB(3); // accl[i] <= acc[i]-3; carryVector <=<1 1100 ...>
cNOP; WHERECARRY; // activeVector <= <1110 ... 0>

cNOP; VADD(2); // accl[i] <= acc[i]+2;

cNOP; WHEREZERO; // activeVector <=<0 10 0 ...>

cNOP; ENDWHERE; // activeVector <=<1 110 ...>

cNOP; ENDWHERE; // activeVector <= <1 111 ...>

The first where instruction lets active only the first three cell. The second where
adds a new restriction: only the cell with index 1 remains active. The first endwhere
restore the activity of the first three cells, while the second endwhere reactivates all
the cells.

o

Minimum Spanning Tree Algorithm on MapReduce One-Chip Architecture 133

This one-chip MapReduce architecture is used as an accelerator in various appli-
cation fields: video [2], encryption, data mining. Also, non-standard versions of this
architecture are used for generating efficiently pseudo-random number sequences [3].

The system we work with is a many-core chip with a MapReduce architecture
that performs best on matrix-vector operations. Therefore, we designed an algorithm
based on the representation of the graph as a matrix and so we have to cover both
dense and sparse matrix cases.

Furthermore, the steps we took in developing the parallel algorithm were: choos-
ing the sequential Prim’s algorithm for finding the minimum spanning tree from a
graph, understanding how it works and what the result should be, developing the
parallel algorithm having the same result on our MapReduce structure, testing and
comparing it with the algorithm implemented on a Hypercube (the most efficient and
used parallel structure nowadays) and upgrading with few new general features our
generic MapReduce structure to make it more efficient for further general purpose
applications.

3. Dense Minimum Spanning Tree Algorithm

We consider our graph has n vertices. Therefore the dense matrix used for repre-
senting the graph is n x n and it is stored in n vectors v(0),...v(n — 1).

Definition 1 Spanning tree (ST) of an undirected graph G: a tree containing all the
vertices of G.
o

Definition 2 Minimum spanning tree (MST) of a weighted undirected graph is the
ST with minimum weight.
o

3.1. The Algorithm

Let be G = (V, E,w). Consider Vr the set of vertices already added to the result.
The final result is G’ = (V, E',w’), where E’ C FE with ¥ w’ minimal.

1. select the starting vertex: Vp = {r}, withr € V

2. select from (V — V) the vertex pointed by the minimum weighted edge starting
from Vp , add it and the corresponding edge to the final result

3. if Vi £V go the step 2, else stop.

Let be the example form the section 7.2 in [4] (see Fig. 3). The associated storage
resources are:

e f : destination vector
9 2 : distance vector from a

134 V. Maican

v(b) : 1 0519 9 : distance vector from b

v(c) : 350219 : distance vector from c

v(d) : 91204 9 : distance vector from d

v(e) : 991405 : distance vector from e

v(f) : 29 9 95 0 : distance vector from f

INITIALLY:

dist : 99 9 9 9 9 : distance vector; all distances are infinite
source: X X X X X X : source vector; initially unspecified

active: 11111100 ... 0 : Boolean vector used to activate cells
acc X controller’s accumulator; initially unspecified

where: the weighted adjacency matrix is (v(a), v(b),...v(f)); the value 9 stands for oco.

Fig. 3. a. The initial form of the graph used as example.
b. The result (dashed lines are used to represent the removed edges).

The parallel Minimum Spanning Tree Algorithm on the MapReduce engine for
dense matrix representation is:

acc <= inital_vertex;
where (dest = acc)

dist <= 0; \\ set distance 0 to itself
active <= 0; \\ inactivate the associated column
endwhere
while (reductionOr(active) = 1){ \\ do until all the cells are inactive
where (v(acc) < dist) \\ only for vertexes connected to acc
source <= acc; \\ the possible sources are indicated
dist <= v(acc); \\ the associated values are considered
endwhere
acc <= reductionMin(dist); \\ selects the shortest edge
where (first(dist = acc)) \\ select the associated column

acc <= reductionOr(dest);\\ selects a new vertex in dest vector
endwhere

Minimum Spanning Tree Algorithm on MapReduce One-Chip Architecture 135

at (dest = acc) active <= 0; \\ inactivate the associated column

The execution time, evaluated according to the program presented in Appendix
1, is:
TpR]]u(N) = (N — 1)[0gN + 25N — 15 € O(NlOgN)

Example 3 Let us consider the graph from Fig. 3. The initial state of the vector
memory contains the weighted adjacency matriz:

vect[1] = 0
vect[2] =1
vect[3] = 3
vect[4] = 9
vect[5] = 9
vect[6] = 2

© O~ 01 O
©O© =~ NO O Ww
© P> O N - O
OO b = O
O U1 © © O N
LT o T < < T < T]

The value 9 stands for co.
The TEST program is listed in Appendix 1. The result is:

destination = vect[7] =12 3 45 6 x .==abcdef
distance =vect[8 =102112x ...
source =vect[9] =2x4231x .==Dbxdbc a

The result is interpreted as follows: the edges and their weights of the resulting
graph are:

(b,a,1),(d,c,2),(b,d,1),(c,e,1),(a, f,2)

The execution time, provided by the simulator, is: Tprip(6) = 156 cycles.
o

4. Sparse Minimum Spanning Tree Algorithm

4.1. The Algorithm

The parallel Minimum Spanning Tree Algorithm on the MapReduce engine for
sparse matrix representation is:

acc <= initial_value; // set current vertex
w <= v,
r<=(0...0); // reset the vector result
a<=(00...0; // inactivate cells involved in computation
while (redMin(a) = 0) {
activate (1 = acc); // activate where 1 = acc; NEW FEATURE
activate (c = acc); // activate where c = acc; NEW FEATURE
vx <= acc; // save current vertex

acc <= reductionMin(w); // acc loaded with minimum from selected
where (w = acc)
where (first)

136

w <= 9; \\ 9 is our "infinite"

r <= 1;
if (reductionAdd(l

endWhere
endWhere

)

vx)
acc <= reductionAdd(c); // next vertex
else acc <= reductionAdd(l); // next vertex

The execution time for a graph with |[V| = N is:

V. Maican

TPRIM_SM_maz = 2(N - 1)lOgN + 334N — 26 € O(NlOgN)

for |E| execution units (according to the program and evaluation done in Appendix

2).

Example 4 Let us take the same example as for the dense matrix representation and
turn it into a sparse matrixz. The graph we use is shown in Fig. 3. The program uses

a numerical representation for the
Therefore, the representation looks

123456 1234

o O WN -
N © © wkr~r O

O = 01 O -
O = N O Ul W
©O© P> O N = ©
g O = O O
O U1 © © ©N
o O WN -

O O WL O
O O 01 OO
O = N O OO
O b O O OO

9

The sparse representation is:

1: 23344556 6 \\ line
c:112233415\\ column
v:135121425\\ value

5

OO O O OO
O O O O oo

vertezes (a — 1,b — 2,..., f — 6) of the graph.
as follows:

6

For each edge there is an element in the three vectors used to represent the graph.
The test program is listed in Appendiz 2.

The first lines of the program initializes the local

vect[0] =23 344556
vect[1] = 11223341
vect[2] =13512142
vect[3] =00000000
vect[4] =0 0000000
The final result is:

vect[0] =23 344556
vect[1] = 11223341
vect[2] = 13512142
vect[3] = 93599949
vect[4] =1 0011101

O O oo O»
O O ©O OO
O O O OO
O O O OO
o O O o

O O O OO
O O O OO

[3¢, B¢ NG Ie))
O O O OO
O O O OO
O O O OO
O O O OO
O O O OO
O O O OO
O O O OO

0

0
0
0
0
0

//
//
//

//

memory in cells and controller:

line
column
value

result

Minimum Spanning Tree Algorithm on MapReduce One-Chip Architecture 137

The value 1 in vect[4] point to the edges of the resulting graph, the same as in
the result provided by the dense matrix representation algorithm.

The execution time, provided by the simulator, is: Tprinm_sam(6) = 198 cycles.

o

5. Upgraded Version of MapReduce Architecture
and Organization

The Prim’s algorithm based on sparse matrix representation requires, for simplic-
ity and performance, additional forms of spatial selection. This new features, marked
in the algorithm description with the comment NEW FEATURE, meant adding three
new instructions for the array:

actwhere : activate the cells where the local accumulator is equal with the con-
troller’s accumulator (acc = acclil)

saveact : save the current activation configuration
restact : restore the saved activation configuration

The implementation of these new instructions meant reconsidering the relation be-
tween the two vectors used for managing the activation of cells:

reg [a-1:0] actVect[0:(1<<x)-1] ; // activation vector
reg boolVect [0: (1<<x)-1]; // Boolean vector

according to the following relation:
boolVect[k] = (actVect[k] == 0) || (actVect[k][a-1] == 1);

The actions on the activation vector actVect [0: (1<<x)-1] are described as fol-
lows:

if (arrayOperand == ctl)
case (array0OpCode)

actwhere: actVect[i] <= (!boolVect[i] && (accVect[i] == acc))

? 0 : actVect[i] ;

saveact : actVect[i] <= actVect[i] - 1 ;

restact : actVect[i] <= actVect[i] + 1 ;
endcase

At the assembly language level these instructions act as follows:

cNOP; ACTIVATE; //bv=(1111...11)
cNOP; WHERECARRY; // bv=(0 001 ... 11)
cNOP; ACTWHERE; //bv=((0101...11)

138 V. Maican

cNOP; RESTACT; // bv (0001 ...11)

cNOP; ENDWHERE ; // bv

(1111 ...11)

These new instructions allows the programmer to conditionally activate cells, not
only to conditionally deactivate cells.

6. Concluding Remarks

Prim’s algorithm runs on sequential computers in O(N?), where N = |V| (number
of vertices of the graph). On a hyper-cube engine with p processors and size in
O(NlogN) the execution time is in O(NlogN) with p = N. On our MapReduce
engine, with N execution units and size in O(N), the execution time is in the same
magnitude order, O(NlogN). So, the execution time is the same butl the engine is
smaller and simpler.

Besides the theoretical results, the actual measurements are very favourable for
our approach. While the Intel’s Xeon Phi provides ~ 150pJ/op in 22 nm technology,
our approach provides 7pJ/op in 28 nm technology.

Acknowledgments. This work has been funded by the Sectorial Operational Pro-
gram Human Resources Development 2007-2013 of the Ministry of European Funds
through the Financial Agreement POSDRU/159/1.5/S/132397.

References

[1] ASANOVIC K., BODIK R., CATANZARO B. C., GEBIS J. J., HUSBANDS P,
KEUTZER K., PATTERSON D. A., PLSKER W. L., SHALF J., WILLIAMS S. W.,
YELICK K. A., The Landscape of Parallel Computing Research: A View from Berkeley,
Tech. Rep. No. UCB/EECS-2006-183, 2006.

[2] BIRA C., HOBINCU R., PETRICA L., CODREANU V., COTOFANA S., Energy
- Efficient Computation of L1 and L2 Norms on a FPGA SIMD Accelerator, with
Applications to Visual Search, Proceedings of the 18th International Conference on
Computers, Advances in Information Science and Applications - volume II, Santorini,
Greece, 2014, pp. 432-437.

[3] GHEOLBANOIU A., MOCANU D., HOBINCU R., PETRICA L., Cellular Automaton
pRNG with a Global Loop for Non-Uniform Rule Control, Proceedings of the 18th Inter-
national Conference on Computers, Advances in Information Science and Applications
- volume II, Santorini, Greece, 2014, pp. 415-420.

[4] KUMAR V., GRAMA A, GUOTA A., KARYPIS G., Introduction to Parallel Comput-
ing. Design and Analysis of Algorithms, The Benjamin/Cummings Pub. Comp. Inc.,
1994.

[5] PAPAGIANNIS A., NIKOLOPOULOS D.S., MapReduce for the Single-Chip- Cloud
Architecture, ACACES Journal - Seventh International Summer School on Advanced
Computer Architecture and Compilation for High-Performance and Embedded Systems,
Fiuggi, Italy, 2011.

Minimum Spanning Tree Algorithm on MapReduce One-Chip Architecture 139

[6] PRIM R. C., Shortest connection networks and some generalizations, Bell System Tech-
nical Journal 36 (6), 1957, pp. 1389-1401.

[7] STEFAN G. M., MALITA M., Can One-Chip Parallel Computing Be Liberated from
Ad Hoc Solutions? A Computation Model Based Approach and Its Implementation,
Proceedings of the 18th International Conference on Computers (part of CSCC ’14),
Advances in Information Science and Applications - volume IT, Santorini Island, Greece,
2014, pp. 582-597.

[8] STEFAN G. M., One-Chip TeraArchitecture, Proc. of the 8th Applications and Princi-
ples of Information Science Conference, Okinawa, Japan, 2009.

[9] TRIPATHY A., PATRA A., MOHAN S., MAHAPATRA R., Distributed Collaborative
Filtering on a Single Chip Cloud Computer, IEEE Conference on Cloud Engineering
(IC2E), 2013, pp. 140-145.

Appendix 1: Dense Matrix Representation Program

The Program

The program for dense matrix representation is the following, named 03_PRIM.v:

cNOP; IXLOAD;

cNOP; VADD(1) ;

cNOP; STORE(7); // dest : 123456

cNOP; VLOAD(9) ;

cNOP; STORE(8); // dist : 99 9999

cVLOAD(2); LOAD(7); // acc <= 2; acc <= dest

cNOP; CSUB; // accl[i] <= dest[i] - acc

cNOP; WHEREZERO; // where dest[i] = acc

cNOP; STORE(8) ; // dist[i] <= 0

cSTORE(3) ; ELSEWHERE; // inactivate the cell
LB(1); cLOAD(3); NOP;

cNOP; CALOAD; // acc[i] <= mem[acc][i] = mem[2] [i]

cNOP; SUB(8) ;

cNOP; WHERECARRY ;

cNOP; CLOAD;

cNOP; STORE(9) ;

cNOP; CALOAD;

cNOP; STORE(8) ;

cNOP; ENDWHERE;

cNOP; LOAD(8) ;

cNOP; NOP;

cNOP; NOP;

cNOP; NOP;

cCLOAD(1); NOP;

cNOP; CSUB;

cNOP; WHEREZERO;

cNOP; NOP;

cNOP; WHEREFIRST;

cNOP; LOAD(7);

140 V. Maican

cNOP; NOP;

cNOP; ENDWHERE;
cNOP; ENDWHERE;
cCLOAD(0) ; NOP;

cNOP; CSUB;
cSTORE(3) ; WHERENZERO;
cLOAD(4); NOP;
cVSUB(1); NOP;
cSTORE(4) ; NOP;

cBRNZ (1) ; NOP;

The Evaluation

The test program for 03_PRIM.v is:

cNOP; ACTIVATE;
cVLOAD(6); IXLOAD; // acc <= N; acc[i] <= index
cVSUB(1); CSUB; // acc <= acc - 1; acc[i] <= index - N

cSTORE(4); WHERECARRY; // select only the first N cells
’include "O3_matrixLoad.v"

cSTART; NOP;
’include "O3_PRIM.v"

cSTOP; NOP;

cHALT; NOP;

The program 03_matrixLoad.v, which loads the weighted adjacency matrix, is:

cVPUSHL(2) ; NOP;
cVPUSHL(9) ; NOP;
cVPUSHL(9) ; NOP;
cVPUSHL(3) ; NOP;
cVPUSHL (1) ; NOP;
cVPUSHL(0) ; NOP;
cNOP; SRLOAD;
cNOP; STORE(1) ;
cVPUSHL(9) ; NOP;
cVPUSHL(9) ; NOP;
cVPUSHL (1) ; NOP;
cVPUSHL(5) ; NOP;
cVPUSHL(0) ; NOP;
cVPUSHL (1) ; NOP;
cNOP; SRLOAD;
cNOP; STORE(2) ;
cVPUSHL(9) ; NOP;
cVPUSHL (1) ; NOP;
cVPUSHL(2) ; NOP;
cVPUSHL(0) ; NOP;
cVPUSHL(5) ; NOP;
cVPUSHL(3) ; NOP;

cNOP; SRLOAD;

Minimum Spanning Tree Algorithm on MapReduce One-Chip Architecture 141

cNOP; STORE(3) ;
cVPUSHL(9) ; NOP;
cVPUSHL (4) ; NOP;
cVPUSHL(0) ; NOP;
cVPUSHL(2) ; NOP;
cVPUSHL (1) ; NOP;
cVPUSHL(9) ; NOP;
cNOP; SRLOAD;
cNOP; STORE(4) ;
cVPUSHL(5) ; NOP;
cVPUSHL(0) ; NOP;
cVPUSHL (4) ; NOP;
cVPUSHL (1) ; NOP;
cVPUSHL(9) ; NOP;
cVPUSHL(9) ; NOP;
cNOP; SRLOAD;
cNOP; STORE(5) ;
cVPUSHL(0) ; NOP;
cVPUSHL(5) ; NOP;
cVPUSHL(9) ; NOP;
cVPUSHL(9) ; NOP;
cVPUSHL(9) ; NOP;
cVPUSHL(2) ; NOP;
cNOP; SRLOAD;
cNOP; STORE(6) ;

Appendix 2: Sparse Matrix Representation Program
The Program

We use a full numeric representation. Thus, each edge is numbered from 1 to N. The
program O03_PRIM SM.v is:

cLOAD(1); VLOAD(O) ; // acc <= mem[1]; acc[i] <= 0
cNOP; STORE(4) ; // mem[i]l[4] = r[i] <= 0
cNOP; LOAD(2); // accl[i] <= valuel[il]
cNOP; STORE(3); // mem[i][3] = wl[il <= v[il;
cNOP; ENDWHERE; // act[i] <= 1; b[i] <=0
cNOP; WHERECARRY; // to desactivate all cells
cNOP; SAVEACT; //

LB(1); cLOAD(1); LOAD(0) ; // acc <= vx; acc[i] <= line[i]
cNOP; RESTACT; //
cNOP; ACTWHERE; // activate where acc = acc[i]
cNOP; SAVEACT; //
cNOP; LOAD(1); // accl[i] <= column[i]
cNOP; RESTACT; //
cSTORE(1) ; ACTWHERE; // activate where acc = acc[i]
cNOP; LOAD(3); // accl[i] <= w[i] = mem[i] [3]

cNOP; NOP; //

142 V. Maican

cNOP; NOP; //
cNOP; NOP; //
cCLOAD(1); NOP; // acc <= min(w)
cNOP; CSUB; // acc[i] <= acc[i] - acc
cNOP; WHEREZERO; // select where w = acc = min(w)
cNOP; NOP; // TO BE SOLVED!
cNOP; WHEREFIRST; // select first selected
cNOP; VLOAD(9); // accl[i] <= 9; 9 = "infinite"
cNOP; STORE(3) ; // w <= 9, where selected
cNOP; VLOAD(1); // acc[i] <=1
cNOP; STORE(4) ; // r <= 1, where selected
cNOP; LOAD(O); // acc[i] <= line
cNOP; NOP; //
cNOP; NOP; //
cNOP; NOP; //
cCLOAD(0) ; NOP; // acc <= 1 selected
cSUB(1); NOP; // acc <= acc - vx
cBRZ(2) ; NOP; // if (acc=0) jmp to LB(2)
cCLOAD(0) ; NOP; // reload acc <= 1 selected
cSTORE(1) ; NOP; // vx <= next vertex
cJMP(3); NOP; //

LB(2); cNOP; LOAD(1); // acc[i] <= column
cNOP; NOP; //
cNOP; NOP; //
cNOP; NOP; //
cCLOAD(0) ; NOP; // acc <= c selected
cSTORE(1) ; NOP; // vx <= next vertex

LB(3); cNOP; ENDWHERE;
cNOP; ENDWHERE;
cNOP; VLOAD(1); // acc[i] <=1
cNOP; NOP; //
cNOP; NOP; //
cNOP; NOP; //
cCLOAD(0) ; NOP; // acc <= redAdd
cSUB(0) ; SAVEACT; // acc <= acc - N;
cBRNZ (1) ; NOP; //

The Evaluation

The TEST program is:

cNOP; ACTIVATE; // activate all cells

cNOP; VLOAD(O); //

cNOP; STORE(0) ; // mem[i] [0] <= O for simulation

cNOP; STORE(1); // mem[i] [1] <= 0 for simulation

cNOP; STORE(2) ; // mem[i] [2] <= O for simulation

cNOP; STORE(3) ; // mem[i] [3] <= 0 for simulation
cVLOAD(9); STORE(4) ; // |E|l = 9; mem[i] [4] <= O for simulation

cSTORE(0) ; IXLOAD; // mem[0] <= N; acc[i] <= index

Minimum Spanning Tree Algorithm on MapReduce One-Chip Architecture 143

cVSUB(1); CSUB; // acc <= acc - 1; acc[i] <= index - N
cSTORE(4) ; WHERECARRY; // select only the first N cells
cVLOAD(2); NOP; // vertex 2 is the starting vertex
cSTORE(1) ; NOP; // mem[1] <= starting vertex

‘include "O3_matrixLoad.v"
cSTART; NOP;

‘include "O3_PRIM_SM.v"
cSTOP; NOP;
cHALT; NOP;

The program 03_matrixLoad.v, which loads the weighted adjacency matrix in
sparse form, is:

cVPUSHL(6); NOP;
cVPUSHL(6) ; NOP;
cVPUSHL(5); NOP;
cVPUSHL(5) ; NOP;
cVPUSHL(4); NOP;
cVPUSHL(4); NOP;
cVPUSHL(3); NOP;
cVPUSHL(3); NOP;
cVPUSHL(2); NOP;
cNOP; SRLOAD;
cNOP; STORE(0); // vO: line
cVPUSHL(5); NOP;
cVPUSHL(1); NOP;
cVPUSHL(4); NOP;
cVPUSHL(3); NOP;
cVPUSHL(3); NOP;
cVPUSHL(2) ; NOP;
cVPUSHL(2); NOP;
cVPUSHL(1); NOP;
cVPUSHL(1); NOP;
cNOP; SRLOAD;
cNOP; STORE(1); // v1: column
cVPUSHL(5); NOP;
cVPUSHL(2); NOP;
cVPUSHL(4); NOP;
cVPUSHL(1); NOP;
cVPUSHL(2); NOP;
cVPUSHL(1); NOP;
cVPUSHL(5); NOP;
cVPUSHL(3); NOP;
cVPUSHL(1); NOP;
cNOP; SRLOAD;
cNOP; STORE(2); // v2: value

