
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 21, Number 1, 2018, 18–33

Dynamically changing the secret key of an FPGA
chaos-based cipher

Octaviana Datcu1, Radu Hobincu1, and Lucian Petrică1

1Politehnica University of Bucharest, Bucharest, Romania
Email: od@elcom.pub.ro

Abstract. As a continuation of previous work, where a discrete-time Baptista-type
chaos-based cipher was implemented in a Xilinx FPGA module, this paper proposes a more
complex scheme involving hybrid dynamics. A continuous chaotic evolution is utilized to dy-
namically and randomly change the secret key of the discrete-time part. This work describes
the design of a continuous-time chaotic transmitter meant to embed the secret key as well
as a high order sliding mode differentiator also designed such that it is capable of estimat-
ing the dynamics of the transmitter, and Baptista’s algorithm secret key, conceptualized as its
unknown input.

Key-words: Baptista type algorithms; chaos-based cryptography; high order sliding
mode observers; estimation.

1. Introduction
In a previous work [1] a Baptista’s chaos-based cryptosystem [2] was implemented in a Field

Programmable Gate Array. This paper improves the communication scheme by adding an addi-
tional key-exchange procedure involving a continuous-time chaotic Colpitts oscillator as a trans-
mitter of its secret key and a high order sliding mode differentiator [3] on the receiving end,
designed to estimate the states of the transmitter and recover the data. The data is then used as a
decryption key.

Chaos systems are based on chaotic mathematical functions that have the property that they
have a very strong dependency on the initial values, meaning that even a miniscule variation
in the initial conditions will trigger a completely different system evolution. Their definitions
are often recursive [10], [11], [9] and the dynamics of the systems are so complex that they can
not be predicted. They are considered to be effectively pseudo-random. These properties make
chaotic systems an interesting alternative to classic cryptography and pseudo-random number
generators [13], [12].

Dynamically changing the secret key of an FPGA chaos-based cipher 19

One of the more famous albeit not very performant chaos-based cipher is Baptista’s im-
plementation that uses the Logistic map given in (1) as a chaotic function, with a and b real
parameters chosen such that the chaotic behavior is enabled. There have been many publications
that criticise the security of the cipher, one of the main complaints being that the distribution of
the cipher text is not uniform in its definition space. We have published [14] in which the authors
propose a modification of the cipher that will address this issue. This paper will use the modified
and improved version. The encryption and decription algorithms themselves will be described in
sections 2.5. and 2.6..

x[k + 1] = bx[k](1− x[k]) (1)

One other important issue to address is the key space. The Logistic Map has two parameters
that influence the dynamics of the system: the parameter b and the initial value x[0]. Baptista
has used both these values as keys and since both have a strict definition interval for which the
system manifests chaotic behaviour, the size of key space is strictly related to the precision of the
system. As an initial proof of concept, we will use the key-exchange mechanism to only transfer
the value of b from the transmitter to the receiver and we will consider x[0] fixed. We will show
that the size of the key space is directly linked to the quality of the estimator described in section
5.

Next, we will present the system implementation in section 2., we will show simulation
results for an encryption of a data block in section 2.7. and we will finish with conclusions and
suggestions for future work in section 3..

2. Implementation

2.1. System Overview
The proposed chaos based secret communication scheme has several components that will

be described in the following sections. The system diagram is shown in figure 1. The system
behaviour is described below.

(p)RNG

Key Generation Key Validator

Key Queue Chaotic Transmitter

Encryption

M
U
X

D
E
M
U
X

High Order Sliding

Mode Observer

Decryption
Plain Text

Plain Text

Fig. 1. System diagram

The Random Number Generator (RNG) block is used to create random keys for the system.
This RNG will generate uniform values in range [0; 1]. For now, a state-of-the art RNG can be
used, but the authors plan on designing a chaotic based RNG.

The key used for the chaos based encryption is the value for parameter b of the Logistic
Map (1). We will show in section 2.2. that values for b from 0 to 3.57 are not useful, because

20 O. Datcu et al.

they do not exibit chaotic behaviour, thus a key needs to be selected in range [3.57; 4]. The Key
Generation block translates the RNG value to the required interval.

However, there are subintervals in [3.57; 4] that are still not suited for encryption. The role of
the Key Validator block is to analyze the generated value for b and decide if it is secure enough
to use in the encryption stage. If the value is useful, it is written to the Key Queue, else it is
discarded.

Every 1024 bytes (the chosen size for the data block), a new key is extracted from the Key
Queue and sent by the Chaotic Transmitter (described in section 2.3.) to the receiver side. The
key is also used by the Encryption block to encipher data which is then transmitted to the receiver
side. The channel is shared by the key and data transmission through a pair of mux-demux.

On the receiver side, the High Order Sliding Mode Observer (described in section 5) will
recover the key and send it to the Decryption stage which will use it to decipher the following
kilobyte of data.

2.2. Key Generation and Validation

The encryption key that is transmitted through the analog Colpits oscilators consists of a
fractional number: the value for the Logistic map parameter b. Technically, the interval for this
parameter is (0; 4), however, some subintervals show non-chaotic behavior which is not suited
for cryptographic applications. Figure 2 shows the distribution of output for b ∈ (0; 3.6] - the
bifurcation diagram. There can easily be seen that for values of b ∈ (0; 3], x only has one solution
and for b ∈ (3; 3.5], it has two. Even for b ∈ (3.57; 3.678] shown in figure 3, there can be seen a
large gap for x around 0.7. This is problematic because due to the nature of the Baptista’s cipher,
which is used for encryption, there will be some values of the plain text that will be impossible
to encrypt.

Fig. 2. Bifuration diagram for b in range (0; 3.6)

Dynamically changing the secret key of an FPGA chaos-based cipher 21

Fig. 3. Bifuration diagram for b in range (3.57; 3.678)

Starting with b = 3.678, there is a continuous interval for x between 0.3 and 0.9 that we can
use, as shown in figure 4. b still has some gaps though: a small one around 3.75 and a large one
around 3.85. It is possible to zoom in and analyse the range for b between 3.678 and 3.738 which
appears continuous in figure 4. Figure 5 however shows an additional gap at b ≈ 3.702. This is
because the distribution of the x values follows the rules of a fractal function: zooming in will
produce new patterns with new gaps, making it even more difficult to choose a valid key.

Fig. 4. Bifuration diagram for b in range (3.57; 4.00]

22 O. Datcu et al.

Fig. 5. Bifuration diagram for b in range (3.678; 3.738)

In order to address this issue, a process different from encryption will attempt to generate
and validate key values. Fortunately, due to the nature of the key exchange algorithm, these keys
don’t need to be reproducible on the receiver side, since they are transmitted. They don’t even
need to be reproducible on the transmitter side since they are not generated from a password. In
this case, a completely random sequence if values for b will actually increase the security for the
system. Validation for the generated keys imply checking if the value doesn’t fall into one of the
gaps where the distribution of output values has a very small number of items. To check for this,
there are two options: a) compute the Lyapunov exponent and check if it positive, or b) compute
the bifurcation diagram by skipping the transitory time of 250 iterations and then advance the
map a large number of times (we have chosen 1000) and check if the number of different values
is close to 1000.

Because the second option implies a level of uncertainty, we have chosen to implement the
Key Validation block using the Lyapunov exponents. The expression for this exponent is given
in (3).

λ(x, k) = lim
n→∞

1

n

n−1∑
i=0

log |x′[ki]| (2)

with x being the Logistic map given in (1). Replacing x we obtain

λ(x, k) = lim
n→∞

1

n

n−1∑
i=0

log |b(1− 2ki)| (3)

In practice, a value for n must of course be finite, and the system will increase i until the
exponent converges (the new term is less than 10−9). If the result is greater than 0, then the value
of b is appropriate for encryption. It was shown that there is a dense set of parameters for which

Dynamically changing the secret key of an FPGA chaos-based cipher 23

the Lyapunov exponent is negative. This means, we don’t find a single interval in [0; 4] on which
the Lyapunov exponent is positive, which affirms the fractal nature of the bifurcation diagram.

2.3. Chaotic Transmitter

The secret communication key, called b in the remaining of the paper, is embedded using
the inclusion method [15], in the output signal of a Colpitts oscillator, configured in such a way
that this output signal exhibits chaotic behaviour. The output is sampled by a analog-to-digital
converter and multiplexed to the output channel. The modeling equations are given in (4). The
gain G was added only to differentiate between the evolution of the Colpitts oscillator with
(G = 1) and without (G = 0) the secret key included.

ẏ1 = A(−e−y2 + y3 + 1) +Gb

ẏ2 = Ay3 (4)

ẏ3 = − k
A
(y1 + y2) +By3

Some particular values for parametersA = g/[q(1−k)] andB = −1/Q are given in Table 1
in correspondence with the behavior manifested by the Colpitts oscillator, indicated by the sign
of the Lyapunov exponents computed according to the algorithm in [8]. At least one positive
exponent marks the existence of aperiodic, dense trajectories and small perturbation sensitive,
thus pseudo-random (chaotic), dynamics.

Table 1. Lyapunov exponents for the Colpitts oscillator.
g Q λ1 λ2 λ3

0.46 1.38 -0.1392 -0.1551 -0.4298
0.80 1.38 -0.0844 -0.0745 -0.5767
1.46 1.38 -0.5185 -0.2548 -0.4179
2.46 1.38 0.1339 -0.3597 -0.4988
3.46 1.38 0.1564 -0.4227 -0.4583
4.46 1.38 0.1867 -0.4043 -0.5069
4.46 0.38 0.1368 -0.2959 -2.4724
4.46 0.50 0.1544 -0.3673 -0.6619
4.46 1.00 0.2033 -0.5414 -0.6619
4.46 5.00 -0.0169 -0.0203 -0.1626

2.4. The High Order Sliding Mode Observer

The receiver, a high order sliding mode observer [5], from now on abreviated HOSMO, for
the sake of simplicity, is given by (5). The information HOSMO dynamically gets from the
transmitter is contained in the signal y2.

24 O. Datcu et al.

z1 = y2

z2 = ẏ2 = Ay3

z3 = ÿ2 = Aẏ3 = −k(y1 + y2) +ABy3

z4 =
...
y 2 = −k(ẏ1 + ẏ2) +ABẏ3 =

= −kẏ1 − kz2 +Bz3 =

= kAe−z1 − 2kz2 +Bz3 − kA− kb (5)

From system (5), the estimated states are as in:

ŷ2 = z1

ŷ3 = z2/A

ŷ1 =
−kz1 +Bz2 − z3

k

b̂ = Ae−z1 − 2z2 +
B

k
z3 −

1

k
z4 −A (6)

Therefore, HOSMO’s main task is to reproduce the evolution of the transmitter, by only
knowing the vector of values corresponding to the signal y2. It uses the dynamical behavior of
system (5), as in:

ż1 = z2 + C1

ż2 = z3 + C2

ż3 = z4 + C3

ż4 = z5 + C4

ż5 = kAe−z1(z2
2 − z3)− 2kz4 +Bz5 + C5 (7)

where C1, C2, C3, C4 are called correction factors as described in [5] and expressed by:

C1 = −8M1/5|z1 − y2|4/5sign[L(z1 − y2)]
C2 = −5M1/4|z2 − ż1|3/4sign[L(z2 − ż1)]
C3 = −3M1/3|z3 − ż2|2/3sign[L(z3 − ż2)]
C4 = −1.5M1/2|z4 − ż3|1/2sign[L(z4 − ż3)]
C5 = −1.1Msign[L(z5 − ż4)] (8)

The correction factors are chosen such that the errors between the actual evolution of HOSMO
and its expected dynamics {ż1, ż2, ż3, ż4, ż5} are fed back to the HOSMO. They apear with a
properly chosen magnitude and sign such that the error space {ez1 , ez2, ez3 , eb} slides on a zero-
error surface in a finite time.

The fifth state, z5 was added in (7) to reduce the influence of the noise intrinsec to HOSMO
estimation, the chattering (see [6]), on the values we are interested in {z2, z3, z1, b}. The order
chosen to mention the estimated values is that respecting cronollogy, from the one the HOSMO

Dynamically changing the secret key of an FPGA chaos-based cipher 25

receives, z1, to the one having the greatest relative degree to the output of the transmitter, y2 = z1.
See [7] to better follow the implications of relative degrees in clasic sliding-mode observers and,
in particular, in high-order sliding mode observers. The chattering noise is generated by the
high-frequency control switching given by the sign function used in order to solve uncertainity
in the HOSMO.

2.5. Encryption
The encryption block receives a stream of bytes for encryption. Baptista’s approach was to

split the codomain interval for the Logistic map into 256 subintervals, each corresponding to a
possible input value. Then, the system is advanced until the output of the function falls into the
corresponding subinterval for the input. The cipher text is the number of iterations the function
was advanced to reach that value. The problem with this approach, as already stated in the
introduction, is that the distribution of the cipher text is not uniform. In order to address this
issue, we use the output of the Logistic map for the previously enciphered byte to perform an
exclusive-or (XOR) operation with the Baptista’s cipher text producing a new cipher text value
which distribution is uniform, like in figure 6. The blue sections represent the addition to the
original Baptista cipher which is depicted in black. When a value of b is selected for encryption,
a new Logistic map system is initialized with a fixed values for x[0] and the value of b, then it is
advanced with 250 steps in order to pass transitory time, after which the actual encryption starts.

Fig. 6. Encryption process diagram

Another problem with Baptista’s approach is that the number of iterations necessary to reach
the required subinterval can be rather large, to the order of thousands. This means that the cipher
text is 16-bits for every byte of clear text, effectively doubling the size of the data and also that
it takes a large number of operations in order to encrypt a single character. These will not be
addressed in this paper.

2.6. Decryption
Decryption follows the same algorithm, only reversed. Given the parameter b, the system

starts from the initial value x[0]. The received cipher text is XOR’ed with x[0] and the resulting
number represents a number of iterations with which the system is advanced. The subinterval for
the resulting function output value gives the corresponding plain text. The operation repeats for
an entire block of 1024 bytes.

26 O. Datcu et al.

The security of the cipher greatly depends on the key sensitivity and fortunately chaotic
systems depend greatly on the initial condition and parameters. As seen in Fig.7, a variation of
10−15 of the decryption key makes the data impossible to discern, resulting in a quasi-uniform
distribution. In the example, the encryption key is b = 3.99 and the decryption key is b′ =
3.99 + 10−15.

Original image Decrypted image

0 100 200 300

Plain message samples

0

200

400

600

O
c
c
u

re
n

c
e

0 100 200

Decrypted message samples

0

50

100

150

200

O
c
c
u

re
n

c
e

Fig. 7. Decryption with different key

2.7. An example. Simulation results and discussion
2.7.1. Setup and parameters

To exemplify the algorithm described above, the ordinary differential equations solver
1 (Euler) with fixed step 10−6 was used in a Matlab Simulink simulation. For the Col-
pitts transmitter the parameters were chosen g = 4.46;Q = 1.38. The initial condi-
tions of the estimator are {z1(0), z2(0), z3(0), z4(0), z5(0)} = {y1(0), y2(0), y3(0), 0, 0} =
0.81472368639317; 0.905791937075619; 0.126986816293506; 0; 0. A Butterworth second or-
der low pass filter with cutoff frequency ω0 = 2π/0.12 was added to the HOSMO in order to
remove the chattering from the estimated states. The same filter was used in the transmitter to
compare the original states and the estimated ones as in figures 10, 12 and 14. The evolution of
the reconstructed parameter b̂ and its constant value b = 4 are illustrated in figure 8.The final
b value used in the decryption block is obtained by averaging this evolution over the last 105

Dynamically changing the secret key of an FPGA chaos-based cipher 27

samples. The results are shown in table 2 for b ∈ [3.56; 4] with a step of 10−2. In this example,
the HOSMO is only able to recover b with 2 exact decimal values as it can be seen in Fig. 9. The
precision in state estimation decreases with a factor of ≈ 10−3 with each further estimation step,
as it can be observed in Fig. 13, Fig. 15 and Fig. 11.

Table 2. Estimation of the secret key b ∈ [3.56; 4] by the HOSMO with parameters L = 1040 and
M = 105.

b b̂ b b̂ b b̂

3.56 3.5580351508858 3.71 3.7079979620259 3.86 3.8579228779057
3.57 3.5680328807786 3.72 3.7179900482914 3.87 3.8679515066995
3.58 3.5780322749782 3.73 3.7279853331485 3.88 3.8779429277126
3.59 3.5880269030275 3.74 3.7379599534386 3.89 3.8879416773573
3.60 3.5980588032151 3.75 3.7479636094201 3.90 3.8979316809814
3.61 3.6079991118783 3.76 3.7579963713988 3.91 3.9078934595980
3.62 3.6180608344815 3.77 3.7679870212014 3.92 3.9179170173659
3.63 3.6280037968218 3.78 3.7779855720617 3.93 3.9279145906426
3.64 3.6379951757411 3.79 3.7879587653470 3.94 3.9378812589547
3.65 3.6479925077161 3.80 3.7979441927598 3.95 3.9479074269695
3.66 3.6579957119919 3.81 3.8079141349108 3.96 3.9578759024316
3.67 3.6680142681080 3.82 3.8179399760569 3.97 3.9679320438056
3.68 3.6780306160224 3.83 3.8279441244635 3.98 3.9778819997400
3.69 3.6879928167361 3.84 3.8379429783991 3.99 3.9879133410858
3.70 3.6979969154444 3.85 3.8479302386131 4.00 3.9978609373831

0 0.5 1 1.5 2

samples 10 7

2

2.5

3

3.5

4

4.5

5

Fig. 8. Estimated value for parameter b - the Decryption Key

28 O. Datcu et al.

-10 -8 -6 -4 -2 0 2 4

e
b 10

-3

0

1

2

3

4

5

6

O
c
c
u
rr

e
n
c
e
 n

u
m

b
e
r

10
5

Fig. 9. Error for parameter b - the Decryption Key

2.7.2. Comparison with the state-of-the-art

The state-of-the-art secret communication scheme involves two algorithms: a public-private
(asymmetric) key encryption (like Rivest-Shamir-Adleman) used to negotiate a secret key that is
then utilized for a symmetric encryption algorithm (like Advanced Encryption Standard). Both
RSA and AES are currently approved standards by the National Institute of Standards and Tech-
nology.

Altough the proposed communication scheme is a lot different from the state-of-the-art and it
is difficult to make a meaningful comparison, especially since the system was only implemented
in simulation, we will attempt to discuss the differences, both quantitatively and qualitatively.

Quantitatively, we will evaluate the performance of the encryption system in floating point
operations per byte of clear text. Since decryption and encryption require the same operations,
only in reverse, it is enough to estimate the number of operations required for encryption. In or-
der to advance the logistic map one iteration, given (1), the operations required are: one subtrac-
tion and two multiplications in floating point arithmetic; that is three Floating Point Operations
(FLOPs). In [2], the average number of iterations required for encrypting one character is 6000.
Our improvement of the cipher requires an additional XOR operation per encrypted byte. The
total number of operations required is: 18k FLOPs + 1 Integer Operation. The latter is much
faster so it can be ignored.

The processor used for evaluation is a Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz. Ac-
cording to [16], this processor model can execute a number of 14.33 GFLOPS. Dividing that
with 18 · 103FLOPs yelds 0.76MB/s.

Dynamically changing the secret key of an FPGA chaos-based cipher 29

At the same time, running the OpenSSL evaluation tool on the same processor yelds the
following single core results:
t y p e 16 b y t e s 64 b y t e s 256 b y t e s 1024 b y t e s 8192 b y t e s
aes−128 cbc 113357 .03 k 123624 .69 k 126561 .16 k 127446 .22 k 127860 .96 k
aes−192 cbc 95368 .48 k 103951 .46 k 106232 .38 k 106234 .85 k 105129 .75 k
aes−256 cbc 83489 .82 k 88777 .48 k 90334 .24 k 90573 .31 k 90535 .34 k

The conclusion is that the proposed system is 500 times slower than 256-bits CBC AES.
However, the comparison might not be completely fair due to the fact that most modern proces-
sor have dedicated instructions for AES and RSA encryption. Moreover, the most significant
slowdown is due to Baptista’s algorithm that requires 6000 iterations for encrypting one byte of
clear text, not the key exchange itself, which is the main contribution of this paper. As future
work, we will attempt to replace the encryption scheme with a stream cipher implemented with
a chaos based pseudo-random number generator.

Qualitatively, the security of the cipher needs to be evaluated. This is, of course, critical
for practical applications and will be addressed thoroughly though cryptanalysis in a following
research. The security is influenced by two factors: a) the security of the key exchange and b)
the robustness of the cipher when the key is unknown to the attacker. We will only discuss the
first item, especially considering that the security of Baptista’s cryptosystem has been thoroughly
analyzed in several papers.

It was shown already that the value for the key b is extremely sensitive: a variation of even
10−15 will generate a entirely different dynamic of the system and thus it will make decryption
impossible. So it is sufficient to show that a HOSMO configured with a wrong set of parameters
will not be able to estimate the key with enough precision. Currently, the estimator can only
obtain the key correctly up to the second decimal, and that is with the best values for parameters
L and M and the initial states z1−5. Since the key transmitter is itself a chaotic system, we know
of no other ways to predict the evolution of the system without knowing the initial state.

0 5 10 15 20

time [s]

-200

-150

-100

-50

0

50

100

Fig. 10. Estimated value for state y1

30 O. Datcu et al.

-2 -1.5 -1 -0.5 0 0.5 1

e
z

1

10
-6

0

1

2

3

4

5

6

O
c
c
u
rr

e
n
c
e
 n

u
m

b
e
r

10
5

Fig. 11. Estimation error for y1

0 5 10 15 20

time [s]

-20

0

20

40

60

80

100

120

Fig. 12. Estimated value for state y2

Dynamically changing the secret key of an FPGA chaos-based cipher 31

-1 -0.5 0 0.5 1 1.5

e
z

2

10
-14

0

0.5

1

1.5

2

2.5

3

3.5

4

O
c
c
u
rr

e
n
c
e
 n

u
m

b
e
r

10
6

Fig. 13. Estimation error for y2

0 5 10 15 20

time [s]

-4

-2

0

2

4

6

8

10

Fig. 14. Estimated value for state y3

.

32 O. Datcu et al.

-5 0 5 10 15

e
z

3

10
-12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

O
c
c
u
rr

e
n
c
e
 n

u
m

b
e
r

10
5

Fig. 15. Estimation error for y3

3. Conclusions
This paper proposes an encryption scheme that utilizes a Colpitts oscillator and a high order

sliding mode observer to implement a secure key exchange system. The key exchange was used
in a larger mechanism to encrypt and transmit blocks of 1KB of data. The key is generated ran-
domly and is validated using values for the logistic map Lyapunov exponents. The experiments
show that the key can be transmitted and recovered completely for values up to two fractional
digits. The key space size is limited and increasing it is a goal for future research, as is the re-
duction of the cipher text size in Baptista style encryption.

Acknowledgements. This work has been funded by University Politehnica of Bucharest,
through the Excellence Research Grants Program, UPB GEX 2017. Identifier: UPB- GEX2017,
Ctr. No. 36 /25.09.2017 (CNP).

References
[1] O. DATCU, R. HOBINCU, L. PETRICĂ, Baptista’s chaos-based cipher implemented in a field pro-

grammable gate array, 2017 International Semiconductor Conference, Proceedings, pp. 191-194,
2017.

[2] M. S. BAPTISTA, Cryptography with chaos, Phys. Lett. A 240, 1998.

[3] O. de FEO and G. M. MAGGIO, Bifurcations in the Colpitts oscillator: From theory to prac-
tice, International Journal of Bifurcation and Chaos, vol. 13, no. 10, pp. 2917–2934, 2003, doi:
10.1142/S0218127403008338.

Dynamically changing the secret key of an FPGA chaos-based cipher 33

[4] G. M. MAGGIO, O. De FEO and M. P. KENNEDY, Nonlinear analysis of the Colpitts oscillator
and applications to design, IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 46, no. 9, pp. 1118–1130, 1999.

[5] Higher-order sliding modes, differentiation and output-feedback control, Int. J. of Control, 76 (9/10),
924-941, Special issue on Sliding-Mode Control, 2003.

[6] A. LEVANT, M. LIVNE, D. LUNZ -On Discretization of High Order Sliding Modes, in Bar-
bot,Fridman,Plestan (eds) ”Recent Trends in Sliding Mode Control”, 177-202,IET,2016

[7] A. LEVANT, Finite Time Stability and High Relative Degrees in Sliding Mode Control, Lecture Notes
in Control and Information Sciences No. 412, pp. 59-92, 2012.

[8] A. WOLF, J.B. SWIFT, H. L. SWINNEY, J. A. VASTANO, Determining Lyapunov exponents from a
time series, Physica D: Nonlinear Phenomena, Vol. 16, Issue 3, July 1985, Pages 285-317.

[9] M. HÉNON, A two-dimensional mapping with a strange attractor, Communications in Mathematical
Physics. 50 (1): 6977, 1976.

[10] K.T. ALLIGOOD, T.D. SAUER and J.A. YORKE, Chaos: An Introduction to Dynamical Systems,
Berlin: Springer-Verlag, 1996.

[11] DEVANEY, ROBERT L. (1988), Fractal patterns arising in chaotic dynamical systems, in Peit-
gen, Heinz-Otto; Saupe, Dietmar, The Science of Fractal Images, Springer-Verlag, pp. 137168,
doi:10.1007/978-1-4612-3784-6 3.

[12] A. VLAD, A. LUCA, O. HODEA, R. TĂTARU, Generating Chaotic Secure Sequences Using Tent
Map and a Running-Key Approach, The Publishing House Proceedings of the Romanian Academy,
Series A, Vol. 14, Special Issue 2013, pp. 295 - 302.

[13] G ALVAREZ, S LI, Some basic cryptographic requirements for chaos-based cryptosystems, Interna-
tional Journal of Bifurcation and Chaos 16 (08), 2129-2151.

[14] O. DATCU, R. HOBINCU, M. STANCIU, R. A. BADEA, Encrypting multimedia data using modified
Baptista’s chaos-based algorithm, 3rd EAI International Conference on Future Access Enablers of
Ubiquitous and Intelligent Infrastructures, 2017.

[15] M. L’HERNAULT, J.-P. BARBOT, A. OUSLIMANI, Sliding Mode Observer for a Chaotic Com-
munication System: Experimental Results, IFAC Proceedings Volumes, Vol. 39, no. 8, 2006, Pages
401-406, doi:20060628-3-FR-3903.00071.

[16] Project Asteroids@home, online, visited on 28/01/2018, https://asteroidsathome.net/boinc/cpu list.php

