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Abstract. Theoretically, the presence of a metallic nanoparticle enhances the inter-
molecular energy transfer. We calculate this enhancement factor with a modal approach per-
taining analytical results in the case of a nanosphere. We calculate the Green’s function of the
system relaying on the spectral properties of the electrostatic operator, fully known for spher-
ical geometry. In contrast to other treatments, the present calculations are straightforward
for any molecular orientation giving modal information about the response of the system.
Numerical calculations and further discussions are also provided.
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1. Introduction
Energy transfer, especially the resonance energy transfer (RET) between a donor molecule

and a near by acceptor molecule, plays an important role in many aspects of photophysical
and photochemical processes like photosynthesis and light harvesting [1,2], photovoltaics [3],
biomolecular structure and fluorescence probing [1,4-6], biosensing [7]. The main transfer mech-
anism of these processes obviously depends on the distance between the donors and the accep-
tors. Thus, when the distance is less than 2 nm the mechanism depends on the molecular orbital
overlap hence, the treatment is quantum mechanical [2, 8]. Moreover, within this range of dis-
tances the energy transfer enters the competition with the electron transfer process. On the other
hand, when distances are between 2 and 10 nm the electrostatic dipole-dipole interaction enables
a nonradiative energy transfer by the Förster resonance energy transfer (FRET) [2, 9]. Alterna-
tively, the radiative mechanism plays a role when the distances between donors and acceptors are
comparable or greater than the wavelength of the incoming radiation [10].
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FRET is a weak process because it is inverse proportional to the sixth power of the separation
distance. Hence, an enhancement is often desired in various applications like in the long-range
energy transfer between fluorescent centers [11]. The enhancement is obtained by plasmonic
effect through the coupling between light and the collective excitations of the free electrons in
metals. Plasmonic effects of surface plasmon polaritons (occurring on the interfaces between
metals and dielectrics) and localized surface plasmons (around metallic nanoparticles) are shown
by strong fields and field confinements below diffraction limit which can be utilized in sensing
and biosensing applications [12]. Strong fields lead to strong coupling of light with atomic and
atom-like systems [13-15].

FRET enhancement has been studied in planar metallic structures [16] and in variously
shaped nanoparticles: spheres and spheroids [17], nanodiscs [18] and nanorods [19]. When it
is possible analytical treatments of a physical process can provide valuable insights of the pro-
cess. Analytical approaches of plasmonic enhancement of FRET were used in [17] for spheres
and spheroids, for shelled spheres in [20] and for spheroids in [21]. For example Shishodia et al.
used the Bergman’s approach [22], which has the disadvantage of operators defined in the whole
space [20].

In our work we use a method closely related [23-26]. It is also an operator method, but the
operators are defined on surfaces rather than the whole space. Our method allows the calculation
of a Green’s function that permits easy calculations the system response to any kind of stimulus
[27]. The Green’s function exhibits a modal decomposition of the response and it has been used
in spectroscopies like electron energy loss spectroscopy (EELS) or scanning near-field optical
microscopy (SNOM), but it hasn’t been used in FRET problems [27]. In the present work we
apply the Green’s function method to estimate the FRET enhancement. The approach is based on
the fact that for spherical nanoparticles all spectral properties of the surface operators are known
[28], hence an analytical expression of the boundary Green’s function is provided. It will be
further shown that the boundary Green’s function allows easy calculations for any orientation of
donors and acceptors. In addition to that, the terms associated with plasmonic enhancement can
be easily identified in the expressions of the FRET enhancement factor. In a recent conference
paper [29] we tackled the same problem. However, the approach is a bit different here, mostly by
setting the problem in a broader context and explicitly calculating the boundary Green’s function.
The paper has the following structure: in section 2 we present the calculation model for plas-
monic enhancement of FRET; in section 3 we present the description of plasmonic enhancement
of FRET by the boundary Green’s function, which allows a modal decomposition; in section 4,
for a nanosphere we calculate its boundary Green’s function and its plasmonic enhancement of
FRET; in the last section, section 5, we present some numerical results, the discussions, and the
concluding remaks.

2. The model for plasmonic enhancement of FRET
Energy transfer by FRET is governed by the electrostatic dipole-dipole interaction, which

provides an expression for rate transfer of the following form [2, 9, 10, 30]:

kET =
ηD

τD

9000k2 ln10
128π5n4NA

1
R6

∫
ε(v)I(v)

v4 dv. (1)

In Eq. (1) ηD and τD are respectively fluorescence quantum yield of the donor and donor emis-
sion lifetime, k is an orientation factor of the dipoles associated with the donor and the acceptor,
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NA is the Avogadro number, n is the refraction index of the host medium, R is separation dis-
tance between donor and acceptor, v is wavenumber, while the integral is the spectral overlap
between absorption coefficient of the acceptor ε(v) and the normalized emission spectrum of the
donor I(v). Nonetheless, the Föster theory based on Eq. (1) has several shortcomings, a few of
which were mentioned above, like the range of validity (between 2 and 10 nm). Below 2 nm the
point-dipole approximation is not valid anymore; also other quantum mechanical processes may
become relevant like the electron transfer between donor and acceptor [2,8,10]. For distances
comparable with the light wavelength radiative processes are needed to be considered [10,30]. In
addition, the quantum nature of light may be also considered. Moreover, FRET is based on weak
coupling and index of refraction may be inhomogeneous. Many of these limitations as well as
the plasmon enhanced FRET have been considered in recent works where the quantum nature of
the donors, acceptors, and radiation has been considered [30]. The expression reads:

kQET =
ηD

τD

9000ln10
128π5NA

∫
ε(v)I(v)

v4

∣∣∣∣∣eA ·ED(rA,v)
dD

∣∣∣∣∣
2

dv. (2)

In the last term of right hand side, eA is the direction of the acceptor dipole, located at rA, ED is
the field created by the donor with a classical dipole strength dD at acceptor site. The information
about dipole orientation factor, distance dependence as well as about the refraction index of the
medium is embedded in this term. However, the plasmon enhanced factor is still calculated by
classical electrodynamics means.

Below it is provided the method used in the electrostatic approximation by which we can
calculate the plasmonic enhancement factor of FRET. Thus both the donor (D) and the acceptor
(A) are associated with point-like dipoles, dD and dA, respectively, whose the energy transfer
is governed by the dipole-dipole interaction [2,9 ,10]. The energy transfer and eventually its
enhancement regard D and A as time-harmonic point-like dipoles interacting with each other
directly or via the metallic nanoparticle (Fig. 1) [17,21]. The electrostatic potential contains four
terms:

Φ(r) = ΦA(r)+ΦD(r)+ΦAind (r)+ΦDind (r). (3)

The first and the second term are the electric potentials generated by A and D, while the other
two terms are the electric potentials generated by the charge induced on the nanoparticle by the
two dipoles A and D. The electric field at the acceptor site is:

EA =−∇
[
ΦD(rA)+ΦDind (rA)+ΦAind (rA)

]
, (4)

which gives an interaction energy for the acceptor in the presence of both the donor and the
nanoparticle of the following form:

UA =−dA ·EA =UAD +UADind +UAAind . (5)

The plasmonic enhancement factor of the FRET process is thus defined simply as [17,21]:

∣∣A∣∣2 = ∣∣∣∣∣1+ UADind

UAD

∣∣∣∣∣
2

. (6)
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3. Description of the plasmonic enhancement of FRET by the
boundary Green’s function

In the electrostatic (nonretarded) approximation the total electric field E is the sum of the
electric field Efree of the imposed free charge ρfree(r,ω) and the field of the induced charge due to
the presence of the nanoparticle Ebound . It is assumed that the free charge distribution is placed in
a medium of dielectric permittivity ε0, outside the nanoparticle of dielectric permittivity ε1, and
has temporal evolution of the form exp( jωt). Accordingly all the electric fields Efree, Ebound ,
and E have an associated electrostatic potential, i. e., Efree = −∇Φfree, Ebound = −∇Φbound ,
and the total electric field E = −∇Φ, such that the electrostatic potential in the presence of the
nanoparticle has the form [23-27]:

Φ(r,ω) = Φfree(r,ω)+Φbound(r,ω) (7)

with

Φfree(r,ω) =
∫ 1

ε0
Gfree(r,r′)ρfree(r′,ω)dr′ (8)

and

Φfree(r,ω) =
∫
Σ

Gfree(r,r′)σ(r′,ω)dΣr′ . (9)

The first integral is a volume integral in whole space, while the second integral is on the
surface Σ that bounds the nanoparticle. The charge density σ(r,ω) induced on the surface of the
nanoparticle is [23-26]:

σ(r,ω) = ∑
k

1
1

2λ
−χk

uk(r)〈vk|n ·Efree〉, (10)

where λ = (ε1− ε0)/(ε1 + ε0) with ε1 and ε0 being eventually ω-dependent, uk and χk are the
eigenfunctions and the eigenvalues of the electrostatic operator defined on Σ of the nanoparticle
as [23-27]

M̂[σ ] =−
∫

r′∈Σ

σ(r′)
∂

∂nr
Gfree(r,r′)dΣr′ (11)

and 〈vk|n ·E free〉 are the scalar products between the corresponding eigenfunctions vk of the ad-
joint operator M† and the dot product n ·Efree, with n the normal to the surface Σ of the nanopar-
ticle. In Eqs. (8), (9), and (11)

Gfree(r,r′) =
1

4π

1
|r− r′|

(12)

is the free-space Green’s function. It is well known [23-26] that uk and vk are bi-orthonormal,
i.e., 〈vk|u j〉= δi j and the vk are obtained from uk by

vk(r) =
∫

r′∈Σ

uk(r′)Gfree(r,r′)dΣr′ . (13)
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We can define a new Green’s function Gbound(r,r′,ω) , which is a boundary Green’s function
that describes the response of the system to imposed free charge ρfree(r,ω), such that the total
electric potential is then given by [23-27]

Φ(r,ω) =
∫ 1

ε0
Gfree(r,r′)ρfree(r′,ω)dr′+

∫
Gbound(r,r′,ω)ρfree(r′,ω)dr′. (14)

Combining Eqs. (7), (9), (10), (12), (13), and (14) one can obtain the expression of boundary
Green’s function as [27]

Gbound(r,r′,ω) =
1
ε0

∑
k

1
1

2λ
−χk

φk(r)φ̃k(r′), (15)

where

φk(r′) =
∫

r′∈Σ

uk(r′)Gfree(r,r′)dΣr′ (16)

is the single-layer potential generated by the charge density uk and

φ̃k(r) =
∫

r′∈Σ

vk(r′)
∂

∂nr′
Gfree(r,r′)dΣr′ (17)

is the double-layer potential of the dipole density vk. We note here that Gbound(r,r′,ω) provides
a modal decomposition of the response. Moreover, it can take a manifestly symmetric form in
r and r′, in which φ̃k is replaced by φk [27], however the calculation of the boundary Green’s
function in its manifestly symmetric form requires the proper normalization of uk by their bi-
orthogonality with vk.

4. The boundary Green’s function of a nanosphere and the
calculation of plasmonic enhancement of FRET

In order to calculate the boundary Green’s function one needs the knowledge of spectral
properties of the electrostatic operator (11) and of its adjoint, namely χk, uk, and vk. There
are several shapes having the associated electrostatic operators with well established spectral
properties [28]. One of these shapes is sphere, whose free-space Green’s function (12) has a
separated form in spherical coordinates given by

Gfree(r,r′) = ∑
l,m

1
2l +1

rl
<

rl+1
>

Ylm(θ ,ϕ), (18)

where Ylm(θ ,ϕ) are the spherical harmonics and r< and r> represent the minimum and respec-
tively the maximum of the pair (r,r′). The form given by Eq. (18) is a well-known expression
found in any textbook treating classical electrodynamics [31]. What has been less known is the
fact that this separated form allows the calculations of both the eigenfunctions and the eigenval-
ues of (11) for spherical shape [28]. Although for sphere the electrostatic operator is symmetric,
the eigenfunctions uk, and vk are not identical (they differ by a constant) since they are related by
Eq. (13). Thus, for a sphere of radius a one has
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ulm(θ ,ϕ) =

√
2l +1

a3 Ylm(θ ,ϕ), (19)

vlm(θ ,ϕ) =

√
1

(2l +1)a
Ylm(θ ,ϕ), (20)

and

χl =
1

2(2l +1)
. (21)

Now it is straightforward to calculate the boundary Green’s function for a spherical particle by
combining Eqs. (15)-(21). Its expression is given by

Gbound(r,r′,ω) =
1
ε0

∑
l,m

ε1− ε0

lε1 +(l +1)ε0

l
2l +1

a2l+1

rl+1r′l+1 Ylm(θ ,ϕ)Y ∗lm(θ
′,ϕ ′). (22)

We easily see that the boundary Green’s function is symmetric in r and r′, even though Eq. (15)
does not show it manifestly.

Formally, the charge density of a dipole of strength d located at r′ is ρd(r) = d ·∇r′δ (r− r′).
Now we are able to find the electric potential generated by a dipole dD located at rD due to the
presence of a sphere of radius a centered at origin as

ΦDind (r,ω) =
−1
ε0

∑
l,m

ε1− ε0

lε1 +(l +1)ε0

l
2l +1

a2l+1

rl+1 Ylm(θ ,ϕ)dD ·∇r′
(Y ∗lm(θ

′,ϕ ′)

r′l+1

)∣∣∣∣∣
r′=rd

. (23)

Finally the interaction energy between a donor dipole dD located at rD and an acceptor dipole dA
located at rA due to the presence of a sphere is given by the following

UADind =
1
ε0

∑
l,m

ε0− ε1

lε1 +(l +1)ε0

l
2l +1

a2l+1

2l +1
dA ·∇r

(Ylm(θ
′,ϕ ′)

rl+1

)∣∣∣∣∣
r=ra

dD ·∇r′
(Y ∗lm(θ

′,ϕ ′)

r′l+1

)∣∣∣∣∣
r′=rd

.

(24)

Equation (24) applies for any locations and orientations of donor and acceptor molecules
and as far as we know it has not been encountered in the literature. In the following we apply
expression (24) to the dipole settings shown in Fig. 1.
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Fig. 1. Arrangement geometries of the donor (D) and the acceptor (A) in the close proximity of a spherical
metallic nanoparticle: (a) aligned and normal to surface dipoles, and (b) parallel and tangent to surface
dipoles.

5. Numerical results, discussions, and concluding remaks
The donors (D) in Fig. 1 have spherical coordinates r = rD, θ = 0, ϕ = 0, while the acceptors

(A) have the coordinates r = rA, θ = π , and ϕ = 0. We recall that the gradient in spherical
coordinates has the following expression: ∇ = er

∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin(θ)

∂

∂ϕ
, where er, eθ and eϕ

are the local and orthogonal unit vectors [31]. Moreover, the donor dipole is oriented along er in
Fig. 1(a) and along eθ in Fig. 1(b). Similarly the acceptor is aligned with −er in Fig.1(a) and
aligned with −eθ in Fig. 1(b). Now direct calculations lead us to the plasmonic enhancement
factor of the FRET process for dipole arrangements shown in Fig, 1(a) of the form [20, 29]

|A|2 =

∣∣∣∣∣1+ (rA + rD)
2

2a3 ∑
l
(−1)l+1 l(l +1)2(ε1− ε0)

lε1 +(l +1)ε0

(
a2

rArD

)l+2∣∣∣∣∣
2

(25)

while the plasmonic enhancement factor of the FRET process for dipole arrangements shown in
Fig, 1(b) takes the following form

|A|2 =

∣∣∣∣∣1+ (rA + rD)
2

2a3 ∑
l,m

(ε1− ε0)

lε1 +(l +1)ε0

l
2l +1

×

×

(
a2

rArD

)l+2
dYlm(θ ,ϕ)

dθ

∣∣∣
θ=π
ϕ=0

dY ∗lm(θ ,ϕ)
dθ

∣∣∣
θ=0
ϕ=0

∣∣∣∣∣
2 (26)

We have several observations. First, Eq. (25) exhibits only m= 0 for the whole sum regarding
l and m indices. On the other hand, careful inspection of Eq. (26) will show that only terms
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Fig. 2. The plasmonic enhancement factor of FRET for both arrangement geometries of the donor and the
acceptor. The aligned dipole geometry (Fig. 1(a)) is plotted with black line with squares and the parallel
geometry (Fig. 1 (b)) is plotted with red line with diamonds.

with m = ±1 are different from 0, because only spherical harmonics that has only sin(θ) will
survive. This can be further shown and Eq. (26) can be further worked out by using some
recurrence relations for the derivative of associated Legendre polynomials which are part of
spherical harmonics [32]. Also, apparently, due to the factor (l + 1)2 in Eq. (25) and the factor
1/(2l +1) in Eq. (26), the enhancement factor of FRET for aligned dipoles seems to be higher.
Numerical estimations performed below prove our last observation.

In order to estimate numerically the plasmonic enhancement factor |A|2 we consider a spher-
ical nanoparticle with 25 nm radius, made of silver whose dielectric function is described by a
Drude model of the form ε1(ω) = ε0(ε∞−ω2

p/(ω(ω + iδ ))) having the following parameters:
ε∞ = 5, ωp = 9.5, eV, and δ = 0.15 eV. The donor as well as the acceptor molecules is placed
at 5 nm from nanosphere surface. The computed enhancement factors as function of frequency
(in eV) are shown in Fig. 2 for both dipole arrangements. The plasmonic enhancement factors
of FRET have maximum values of about 6700 at 3.6 eV for aligned dipole configuration and of
about 1900 at 3.65 eV for parallel dipole configuration. These calculations are consistent with
other recent calculations of FRET enhancement for these two dipole arrangements [30]. The au-
thors, who used a fully retarded numerical scheme, have also noticed a shift of the maximum of
FRET enhancement from the dipole resonance to the quadrupole one, findings that are consistent
with our results [30].

To understand the role of the spherical nanoparticle in FRET enhancement we show the
electric field streamlines along y-component, along the dipole orientations depicted in Fig. 1 (b).
The frequencies are chosen at 2.78 eV (off-resonance), 3.65 eV (on resonance) and at 3.83 eV (at
the common dip). In the off-resonance regime, Fig. 3 (a), the nanosphere behaves as a dipole, but
due to the dipole arrangement it screens the dipole field at acceptor site. The situation is different
from that of the aligned arrangement, where there is an enhancement due to the sphere induced
dipole (see our previous conference paper [29]). In the on-resonance regime, Fig. 3 (b), the
role of the nanosphere is radically changed. The donor and the nanosphere become a very large,
common, and extended dipole that enhances the electric field at the acceptor site. However, at the
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Fig. 3. Electric field y-component streamlines at three frequencies: (a) 2.78 eV; (b) 3.65 eV; and (c) 3.83
eV. The dipole arrangement is parallel.
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frequency of the dip (3.83 eV, the same for any dipole arrangement) the nanosphere effectively
screens the donor dipole since some of the field lines end up on the sphere. We will discuss
this issue elsewhere since it is related to the spectral properties of the electrostatic operator for
spherical shape.

To conclude this work, we calculated analytically and analyzed numerically the enhancement
of intermolecular resonance energy transfer in the presence of a spherical metallic nanoparticle.
We calculated a boundary Green’s function that straightforwardly provides the plasmonic en-
hancement factor of the FRET and its modal decomposition. In contrast to other previous works,
our approach seems to be more direct since it makes use of spectral properties of the electrostatic
operator for spherical geometry. Our numerical calculations show that at large plasmonic en-
hancement factors the donor and the nanoparticle become both a large and extended dipole that
enhances the FRET process.
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