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Abstract. This paper offers an in-depth exploration of the verification procedure per-
taining to the integration of an Advanced High-performance Bus (AHB) Interconnect module.
The verification process holds pivotal significance within chip development, entailing thor-
ough validation and examination of the hardware design before entering the mass production
phase. The principal objective of this verification process is to meticulously unearth poten-
tial bugs or imperfections embedded in the design, which could potentially trigger undesir-
able outcomes, compromised performance, or even critical malfunctions in the final product.
At the heart of this verification approach lies the functional verification paradigm, centered
around simulation-based testing. Within this framework, the AHB Interconnect module is
instantiated in a controlled verification environment designed to emulate real-world scenar-
ios. This environment orchestrates input stimuli to the module and captures ensuing outputs
generated by it. The environment is meticulously programmed to anticipate specific behav-
ioral patterns from the module. Deviations from these anticipated behaviors are promptly
flagged as errors. This meticulous methodology serves to guarantee that the module aligns
with its intended operations and strictly adheres to predefined functional benchmarks. The
paper is dedicated to Acad. Florin Gheorghe Filip, at his 15th anniversary as the Chairman of
the Information Science and Technology Section of the Romanian Academy, and at his 75th

anniversary.
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1. Introduction
This paper aims to present comprehensive insights into the AHB Interconnect module, out-

lining both its essential functionalities requiring testing [1], and detailing the core components
constituting the verification environment along with coverage and test results.
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Collaboratively crafted with Tremend Software Consulting [2], this design endeavors to con-
struct a verification environment capable of detecting a broad spectrum of bugs within the imple-
mentation of an AHB Interconnect module. In the realm of chip fabrication, verification emerges
as a pivotal phase, serving to unearth bugs and errors prior to the commencement of the first
hardware product’s production. Timely bug identification in the early stages of development be-
comes crucial to avert potential production delays and mitigate escalated financial expenditures
for the company [3].

The chip production cycle encompasses four key stages. In the initial stage, a chip architect
formulates the chip’s specification document, encapsulating comprehensive details concerning
features, operational flows, and constraints, including the employed protocol. Transitioning to
the second stage, a designer transcribes the information from the specification into code imple-
mentation utilizing a Hardware Description Language like Verilog. Subsequently, the third phase
encompasses the rigorous verification process. In this phase, the verification engineer initiates
the Verilog module constructed by the designer within a dedicated verification environment. This
environment conducts tests aimed at ascertaining whether the chip’s functionality aligns with the
architect’s intended specifications. Subsequently, the fourth stage encompasses the physical pro-
duction of the hardware product [4].

Functional verification entails simulating the chip within a designated verification environ-
ment. This environment administers stimuli to the device under test (DUT) and captures the
resulting outputs. Simultaneously, it processes these stimuli, attempting to generate predictive
outcomes. By comparing these predictions against the actual outputs obtained from the DUT, the
environment can discern the chip’s operational correctness. Notably, the verification process for
the AHB Interconnect module adopts a black-box methodology. This implies that the environ-
ment lacks access to the internal workings of the DUT and remains unaware of its architectural
intricacies. The environment’s concern is solely centered around the correctness of the DUT’s
outputs [5–8].

An imperative aspect entails segregating the roles of the designer and the verification engi-
neer. This separation ensures a robust verification process, as the likelihood of both individuals
making identical errors in interpreting the specifications remains minimal.

2. The AHB Interconnect Module
The AHB Interconnect is a complex module that has the role of interconnecting multiple

other components and allowing the data transfer between them [6].
The components that the AHB Interconnect module interconnects can be classified as fol-

lows:

• Master Devices – these components can initialize data transfers. The data transfers can be
read or write transfers.

• Slave Devices – these components have the role of responding to the data transfers from
the Master Devices. In case of a write transfer, the Slave Device must save the data, and in
the case of a read transfer, the Slave Device must return data.

ARM introduced the AHB (Advanced High-performance Bus) protocol and bus in AMBA
version 2 in year 1999. The AHB Interconnect module uses the AHB interfaces and protocol to
communicate with the Master Devices and Slave Devices. In this paper the following terms will
be used:
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• AHB bus – the bus architecture that determines the set of signals and their size [6].
• AHB protocol – the set of rules that allows for the data transfer on the AHB bus [6].

2.1. Data transfer flow
The AHB Interconnect module allows for only one data transfer at a time. Because of this

reason, the AHB Interconnect module implements a logic for calculating what Master is allowed
to make a transfer as shown in Fig. 1. If a Master wants to start a transfer, first it needs to send a
request for accessing the bus. The AHB Interconnect knows that each Master has a priority level
represented by a number from 0 to the number of Master Devices (lowest number has the highest
priority). If only one Master is requesting the bus access, the AHB Interconnect will grant it the
access. If multiple Master Devices are requesting bus access at the same time, then the AHB
Interconnect must give access to that one Master that has the highest priority [2, 6]. Each Master
can make data transfers to any Slave. For that to happen the AHB Interconnect includes logic
for decoding the addresses of the transfers. Each Slave is determined by a range of addresses.
The AHB Interconnect looks at the address of a transfer and finds the range of addresses that
includes it. When the range is found, the AHB Interconnect module will select the Slave that has
that range – this is how the Slave will know that it is the one that must respond to that transfer.

Fig. 1. AHB Interconnect module.

2.2. AHB Interconnects functionalities that need to be tested
The implementation of the AHB Interconnect can be called correct, if each of the following

functionalities are tested and validated:

• correct data transfer – protocol needs to be correctly implemented by the AHB Intercon-
nect and all the transfer types need to be supported (SINGLE, INCR, WRAP4, INCR4,
WRAP8, INCR8, WRAP16, INCR16) [6].

• correct arbitration of Master Devices requests – The arbitration process needs to respect
the priority rule. If there are no requests, the Master with the lowest priority will be granted
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access by default. In case of locked transfers, the AHB Interconnect needs to ignore any
requests until the lock is dropped.

• correct selection of Slave Devices – the AHB Interconnect must correctly select the Slave
based on the transfer address and the ranges of addresses of each Slave.

3. The Verification Environment
Universal Verification Methodology or UVM, was developed by Accellera in 2009 using as

platform the Open Verification Methodology (OVM). This methodology tries to standardize the
structure of any verification environment [7].

UVM uses an object-oriented approach and offers a set of base classes with different roles
for all the environment components. Also, the methodology recommends that each environment
component to be as independent from the others as much as possible. By adhering to this recom-
mendation, the environment components can be reused in other projects saving time and money.

3.1. The main environment components
The verification environment is composed of multiple components with specific roles. The

following sections will describe those components that take a vital role in the verification process
as described by UVM.

3.1.1. Agents

The Agent components are the ones that will simulate the behavior of the Master Devices and
the Slave Devices. The environment will build one Agent for each Master or Slave component.

Over the course of the simulation, the Master Agents will send to the AHB Interconnect data
transfers as if it was a real component. The AHB Interconnect must take care of all the requests
from the Master Agents and rout those transfers to the Slave Agents, based on the addresses of
the transfers. The Slave Agents will behave like real Slave components, and they will return data
if needed, also they can introduce wait states at random, as the AHB protocol allows.

The Master Agents includes three components with specialized roles:

• Master Driver – this component is the one that sends the AHB transactions to the AHB
Interconnect. This component has access to the AHB Interconnect interface, and it can
assert values to the wires. The Driver must respect the AHB protocol.

• Master Monitor – this component is the one that collects the transactions that the Driver
sends to the AHB Interconnect. The Monitor checks that the protocol is respected by the
Driver – the burst transfers must follow the rules regarding the sizes and the address values.
The information collected will be sent to the Scoreboard component.

• Sequencer – this component provides the data for the Driver to send.

The Slave Agents include only two components:

• Slave Driver – this component has access to AHB Interconnect interface and can save the
data that arrives from the Master Agents, can send data back to the Master Devices and
can introduce wait states at random.
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• Monitor Slave – this component collects the data that arrives to the Slave. The Monitor
will check if the AHB Interconnect respects the AHB protocol – the packets that arrive
must have the correct sizes and values for the addresses. The data collected will be sent to
the Scoreboard component.

The Arbitration Agent is used by the environment to collect all the information from the
AHB Interconnect’s interface that can be used to analyze the arbitration process. This Agent
only includes a Monitor for collecting the data.

3.1.2. Scoreboard

The Scoreboard is the main component that does most of the verification of the AHB Inter-
connect’s functionalities. Using the packets received from the Master Monitors, the Scoreboard
will build a prediction. The prediction consists of what Slave should be selected for that said
transfer, and the packet itself that should not be altered by the AHB Interconnect. The packets
should not experience any data loss and also, the packet order should be kept.

The Scoreboard will receive the data from the Arbitration Monitor. Based on that data, the
Scoreboard will check the arbitration functionality. After the Scoreboard analyses the data, it
will send it to the Coverage Collector Components.

3.1.3. Coverage Collector type components

The Coverage Collector components are used by the verification engineer to analyze the
input values that were used as stimuli for the AHB Interconnect. We want to exercise all the
functionalities of the device under test in as many cases as possible. The coverage offers a
numeric value that represents a percentage of the input cases that we wanted to test. A specific
series of input values represents an event, and we can specify in the coverage all the special
events that we assume may hide errors. After a series of tests, or even after one, we can analyze
the coverage and see what coverage items never happen. Once we notice that an event did not
happen over the course of the simulation, the generation of transactions needs to be revised and
improved so that the next time a test is run, that event will take place.

In this environment there are three types of Coverage Collector components:

• The main Coverage Collector – this coverage collector collects all the inputs of the AHB
Interconnect and covers the values for every signal, as well as some complex cover items
about more special events over the course of a simulation. This main Coverage Collector
contains three cover points named as follows:

◦ cg – this covers that all the input signals were asserted values from all the important
possible ranges. For example, it is important to know that the address signal has
had been asserted values from each range of addresses of each Slave. Also, it is
covered that during the simulation, all kinds of packet transitions have had place –
for example: after a WRAP4 packet, a INCR8 packet followed.

◦ cg arb – this covers all the important events regarding the arbitration process. For
example, an interesting case that it is important to know that happened, is the one
where a Master sends a request and is waiting for the response, and after some time,
it gives up the request.
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◦ cg burst across slaves – this covers the cases where the addresses of a burst transfer
indicate to more than one Slave. These cases would be interesting, because it is
important to know that the AHB Interconnect knows how to split up a transfer and
send each transaction to the correct Slave.

• Master Coverage Collector – for each Master Agent, one of these Coverage Collector
objects will be initialized. They will cover only the input signals just to see that each
Master works as intended.

• Slave Coverage Collector – similar to the Master Coverage Collector, one object of this
type will be initialized for each Slave Agent. This Coverage Collector will also cover the
signals of the Slave – no special cases are collected.

Fig. 2 illustrates the workflow diagram of the environment. The Master Agents sends stimuli
to the AHB Interconnect, and at the same time the stimuli are processed by the Scoreboard in
order to generate a prediction. The Slave Agent collects the output results and sends them to the
Scoreboard where they are compared to the prediction. During this process the Scoreboard sends
the data collected to all of the Coverage Collector type components.

Fig. 2. The flow of the verification environment.

4. Validations of the functionalities

4.1. Validation of data transfer
To validate this functionality there are two main checks that need to be done. The first check is

done by the Slave Monitors. The AHB Interconnect has no logic implemented for error packets–
in this case, besides the Slave Monitors, the Master Monitors need to perform the same check of
the packets that they collect.

According to the AHB protocol, a simple AHB transaction consists of the address and data.
This is the smallest data structure that can be determined on the AHB bus. A data transfer or
packet can be either a simple transfer that consists of a single AHB transaction, or it can be a
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burst transfer that contains multiple AHB transactions. These burst transfers can be classified in
one of the two: increment or wrap bursts. The difference between these two is about the value
of the addresses of the transactions that make up the packet. In an increment burst, the addresses
have incremented values from one transaction to the other. In a wrap burst, the addresses wrap
around a certain boundary and form a loop. Both increment and wrap burst can have multiple
versions depending on the number of transactions inside them.

The Monitors will collect each transaction from the interface and will build up the packets.
Once a packet is built, the addresses will be checked to see if they respect the protocol rules.
Another rule that needs to be respected and is checked, is that the first transaction of a packet is
of nonsequential type, and the rest of the transactions are of sequential type. If a packet does not
pass these checks, an error will be signaled. If Slave Monitors signal an error, it means that the
AHB Interconnect outputs wrong packets, while if Master Monitors signal an error, it means that
the Master Drivers do not respect the protocol and the algorithm for the drive of packets needs to
be checked. After a packet passes the checks, it will be sent to the Scoreboard component.

Fig. 3 describes the diagram of the process of collecting the packets. In the diagram is
shown as an example a packet that is composed of four transactions. Master Driver will send one
transaction at a time to the AHB Interconnect. The Master Monitor will collect the transactions
sent by the Driver from the input interface, while the Slave Monitor will collect them from the
output interface. Both type of Monitors rebuild the packet with the transactions that they collect.
The Slave Monitor adds its ID to each transaction. Before sending the packets to the Scoreboard
the packets must be validated.

Fig. 3. The process of collecting packets.

The Scoreboard has two FIFOs, one for Master Devices and one for Slave Devices. Once
there is at least one packet in each FIFO, the Scoreboard will take them and compare each field
inside each transaction of the packets. If the fields match, it can be said that the AHB Interconnect
correctly makes the data transfer between Master Devices and Slave Devices. If a single field
does not match between the packets, it means that the AHB Interconnect does not do the data
transfer correctly. An error can have multiple reasons, for example, the AHB Interconnect can
change the order of the packets, or it can completely miss some transactions. In case of an error,
the log needs to be checked and sent the error to the designer.
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4.2. Validation of Slave selection
The validation of Slave selection is realized at the same time as the data transfer validation.

The AHB Interconnect uses two lists named low addr and high addr that represent the ends of
each range of addresses for the Slave Devices. The Scoreboard will use the same two lists when
it receives a packet. For each transaction of a packet, the Scoreboard will take the address and
will search for the range that includes that said address. The position of the range ends from
the lists will represent the Slave that is expected to respond to that transaction. The found Slave
position will be saved to each transaction structure.

Each Slave Monitor has a unique ID that will be saved to each transaction that it collects.
When the Scoreboard compares all the fields of a transaction as presented in the previous

validation process, it will also compare the ID of the Slave and the Slave number calculated with
the address ranges. In this way, we will be able to tell if the AHB Interconnect correctly sends
the transactions to the correct Slave Devices.

Fig. 4 highlights a diagram of the internal process of the Scoreboard: calculating the Slave
ID prediction of the incoming transactions from Master Monitors, and then comparing it to the
output transactions collected by the Slave Monitors. In this comparison, each data field inside
the transactions are compared, including the prediction of the Slave ID against the real Slave ID.

Fig. 4. The validation of data transfer and the selection of Slave Devices.

4.3. Validation of arbitration process
The arbitration of the requests for accessing the bus for transfers is done in two phases. The

two phases are the request phase and the response phase. These two phases take place one clock
apart.

The Arbitration Monitor will build up arbitration transactions that will contain the following
information:

• the requests of every Master – in the request phase.
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• the grant signal – in the request phase.
• the grant signal – in the response phase.
• the lock signal – in the request phase.

The Scoreboard will analyze the information as follows: If the Master that was granted the
access in the request phase was doing a lock transfer, then the Scoreboard will expect that the
AHB Interconnect will maintain the access to the same Master. If the previous Master was not
doing a lock transfer, then the priority rule applies, and the Scoreboard will expect the Master
with the highest priority that made a request to be granted access. Also, the Scoreboard will
expect that the Master with the lowest priority to be granted access to the bus if there are no
requests.

If the expectations do not match the real output of the AHB Interconnect, then an error will
be signaled that says that the device under test does not perform the arbitration process correctly.

5. Results

5.1. Test and regressions

A test defines what type of packets will be used as stimuli for the AHB interconnect module.
There is a test for each type of burst transfer in either read or write form. There is a test that
will mix up all the read data transfers and another similar test but for write transfers. The most
complete test is the one that will create all kinds of data transfers in either read or write form. In
all the tests the Master Agents will randomly send requests for data transfers.

The test that will use all types of transfers is the most complete one and will generate the
most events and scenarios. Some interesting scenarios that we would make an interesting case,
would be the following: after a read packet follow a write packet, also every transition of burst
transfers, for example, a single packet is followed by a undefined increment burst transfer. These
cases could uncover a bug in the AHB Interconnects code, and this is why it is important to test
them.

For complete verification, it would be best to take the device under test through as many
events and scenarios as possible. This could be achieved by either running multiple tests or
running a single very long test. Running a very long test is not the best solution because of the
time it would take for it to finish. Running multiple tests could offer many results quickly. A
regression is the set of tests that could be run for a module. The set of tests are defined in a
special type of file with the “.vsif” extension that will include the number of tests, configuration
parameters for the tests and any other simulation flags.

For this verification, there will be 105 tests during a regression run. We would like to run
as many tests as possible – 105 tests are the maximum number of tests that can be run due to
memory limitations of the machine that runs the simulation. The regression will run every type
of test multiple times, every test using a different seed, this ensuring that they will be all different.
The seed is used in the generation of data – a different seed means different stimuli.

The main condition for calling the implementation of the device under test correct is to have
all the tests of a regression pass without any errors.
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5.2. Coverage results

Although all the tests pass, another metric for calling the implementation of the module cor-
rect is the coverage results. It is very important to know that the tests that the AHB Interconnect
passed were tests where many different scenarios happen. The coverage of the entire regression
is collected and merged and in the following section the most important coverage results will be
presented and described.

The screen capture presented in Fig. 5 gives the coverage results of the main input signals.
It can be observed that during the simulation all 8 burst type data transfers took place, also all
transitions between these burst types happen. It is important to cover the transition between data
transfer types because they may hide unwanted bugs, for example the AHB Interconnect can get
stuck between certain transitions. Also, every type of burst data transfer was in read and write
form. The BUSY cover point is at 50% because of a limitation inside the AHB Interconnect that
doesn’t allow for this type of state, in consequence 50% is as expected.

Fig. 5. General coverage of inputs.



Approach to Evaluate the Data of Moss Biomonitoring Studies 311

The coverage regarding the arbitration feature is highlighted in the image presented in Fig.
6. The ARB POSSIBILITY cover point describes events regarding the possibility of arbitration
at one moment in time. The arbitration is not possible during a locked transfer, and the events
covered are revolving around this possibility, for example if there were any bus requests when
the arbitration was or wasn’t possible, and if there were no bus requests when the arbitration was
or wasn’t possible. Another event covered is described by the GIVE UP REQUEST. This cover
point refers to the event in which a Master gives up its bus request during the simulation. Other
interesting cases that are covered are regarding the number of simultaneous bus requests at one
moment of time. We would like to see that there were no requests, or only one, multiple requests
or even the scenario where all the Master Devices make a request at the same time.

Fig. 6. Arbitration coverage.

Some more interesting scenarios are the ones regarding the Slave Devices selected over the
course of a burst transfer presented in Fig. 7. These cases would be the ones where the addresses
of the transactions of a burst are part of the ranges of different Slave Devices. We would cover
the cases where the two types of bursts contain transactions with addresses from a single Slave,
or two, or even more.

Fig. 7. Overall coverage report of selection of Slave Devices during a burst transfer.

6. Conclusions
The conclusion drawn from the regression analysis and high coverage rates is that the AHB

Interconnect implementation is deemed accurate. Utilizing the UVM methodology, an environ-
ment was constructed to facilitate a diverse range of tests mimicking real-world device usage
scenarios. The test outcomes yielded affirmative results, with extensive coverage achieved, en-
compassing critical events.

This environment possesses versatility beyond its applicability to the current AHB Intercon-
nect implementation. It stands primed for assessing not only this specific module but also other
analogous implementations. Moreover, certain components of this environment hold potential
for repurposing in distinct projects. For instance, the Monitors can be harnessed in the develop-
ment of any module that leverages the AHB bus and protocol.
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