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Abstract. Anomaly-based intrusion detection systems are designed to scan computer
network traffic for abnormal behavior. Binary classifiers based on supervised machine learn-
ing have proven to be highly accurate tools for classifying instances as normal or abnormal.
Main disadvantages of supervised machine learning are the long processing time and large
amount of training data required to ensure accurate results. Two preprocessing steps to re-
duce data sets are feature selection and feature scaling. In this article, we present a new
hyperbolic tangent feature scaling approach based on the linearization of the tangent hyper-
bolic function and the damping strategy of the Levenberg-Marquardt algorithm. Experiments
performed on the Kyoto 2006+ dataset used four high-precision binary classifiers: weighted
k-nearest neighbors, decision tree, feedforward neural networks, and support vector machine.
It is shown that hyperbolic tangent scaling reduces processing time by more than twofold.
An XOR-based detector is proposed to determine conflicting decisions about anomalies. The
decisions of the FNN and wk-NN models are compared. It is shown that decisions sometimes
turn out differently. The percentage of the opposite decisions has been shown to vary and is
not affected by dataset size.

Key-words: Anomaly-based intrusion detection; binary classification; machine learning.

1. Introduction
The rapid development of computer networks over the past few decades has contributed to

an explosion in the number of malicious attacks on sensitive data. As a result, intrusion de-
tection systems (IDS) have become indispensable tools for protecting computer networks from
malicious attacks, human error and anomalies. IDS are generally classified into three installation
types: host-based, network-based, and hybrid. Furthermore, the network-based intrusion detec-
tion systems can be divided into signature-based and anomaly-based systems, both of which are
inspired by an adaptive human immune system (HIS) [1, 2]. The signature-based system derives
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from humoral immunity, which is based on B cells that protect the body from pathogens coming
from outside the body. B cells produce antibodies to kill pathogens to remember pathogen signa-
tures. The anomaly-based system is motivated by the negative selection of T cells, which protects
the body from self-cells that deviate from normal body cells. T cells secrete cytokines that cause
apoptosis (cell death) of cells that lead to cancer or autoimmune diseases [3]. Signature-based
IDS compare unknown network traffic against a database of known attack signatures. They are
relatively fast but cannot detect unknown malicious attacks. Anomaly-based intrusion detection
systems identify deviation from normal network behavior. The main advantage of anomaly-based
IDS is the detection of unknown attacks. The main problem with anomaly-based detection is the
time and disk space required to develop a statistical model of normal network behavior.

If abnormal network behavior is detected, binary classifiers based on supervised ML are
ideal candidates for anomaly-based intrusion detection systems [4–6]. Reinforcement learning
can also be used to train ML-based classifiers, but while the results of classification can be very
accurate, convergence can be slowed down. In [7] the authors present algorithms to improve re-
inforcement learning. The authors of [8] discuss a variety of potential benefits of reinforcement
learning on classification problems. Unsupervised learning can also be used for classification,
but it is beyond the scope of this paper since unsupervised ML models deal with the unlabeled
data sets. However, methods like k-means clustering offer many possibilities to extract hidden
information from the data, which can be used in the field of big data analysis and processing,
as discussed in [9, 10]. In [11] the author discusses a variety of techniques to improve the per-
formance metrics of functional verifications for all three ML techniques. The size of the data
used to train the models is the main issue with supervised ML. Datasets with multiple features
of different sizes, ranges and units are challenges for supervised ML algorithms. Two prepro-
cessing steps can be performed before classification: feature selection and feature scaling, which
remove irrelevant features and scale the relevant features in the same range. While increasing
classification accuracy, this reduces model complexity and processing time. It should be noted
that in some cases denormalization should be performed as a postprocessing step. The impact
of feature preprocessing on the accuracy and processing time of Feedforward Neural Network
(FNN), weighted k-Nearest Neighbor (wk-NN), Decision Tree (DT), and Support Vector Ma-
chine (SVM) are discussed in this article. The impact of min-max normalization [12] and novel
hyperbolic tangent (TH) scaling on model processing time and accuracy is discussed.

In the previous work, the authors have shown positive properties of the hyperbolic-tangent
scaling, and the goal of improvements based on the Levenberg-Marquardt algorithm. The au-
thors have also shown the benefits of the XOR operation to the detection of conflicting decisions
[13-15]. The main idea of this research is that with the XOR detection of contradictory deci-
sions on anomalies, it is possible to increase the detection level of malware and bugs in computer
networks, improved by the use of accumulator register that deals with triggered outputs of the
classifiers. The Levenberg-Marquardt algorithm is now described in details and the pseudo-code
is given. In accordance with main idea, two hypotheses are derived: (1) by choosing hyperbolic
tangent-type scaling and the damping strategy of the Levenberg-Marquardt algorithm, it is possi-
ble to reduce the processing time by more than twofold without significantly degrading accuracy
of binary classifiers which work in parallel and monitor network traffic and (2) nonlinear binary
classifiers with weights show the best properties for application in XOR detection of conflicting
decisions about anomalies in the computer networks. The results show that the TH scaling has
a clearly positive influence on all presented models. The FNN model is the fastest while the
wk-NN model is the most accurate. These two models are used to make different decisions about
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anomalies based on a binary XOR logic operation to compare the detection quality. The authors
of [16] discuss the concept of two unequal sensors working in parallel and describe a decentral-
ized detection system with parallel topology. This concept is used to detect different decisions
based on an XOR operation performed on the outputs of two classifiers. To detect an anomaly,
the classifiers monitor the behavior of the computer network. However, the classifier decisions
sometimes differ. In their (independent) decisions, the XOR merger rule becomes relevant. If
either output is zero, but not both, the XOR operation produces a logical true. Otherwise the
result is false. The results passed to the accumulator register, which is initially cleared to zero
and holds the results of XOR operation. The results show that the percentage of different deci-
sions is not related to the size of the data sets. It is shown that the detector can remove decision
uncertainties but cannot predict the probability of a given event occurring.

The remainder of the paper is structured as follows. Section 2 is devoted to the related work.
A binary classification scheme is described in Section 3. Feature selection and feature scaling
methodologies as well as the design of the XOR detector are described in details. Section 4
includes observations on the experimental setup and results. Section 5 concludes the paper.

2. Related Work
Many research difficulties in data analysis, visualization, and understanding are related to the

availability and usability of the multidimensional data, as features affect anomaly detection [17].
Dimensionality reduction and feature scaling support binary classification to reduce processing
time and improve ML model accuracy. There are many numerous detection and classification
techniques that have been extensively studied in the literature dealing with feature-based classifi-
cation [18-21]. The feature selection approach to save storage space and speed up the classifica-
tion algorithms is proposed in [19]. When the authors compared neural network, k-NN, and SVM
models, and found that many of them had over 50% faster processing times with 90% accuracy
when using only half of features. A study on the performance of feature selection optimization is
presented in [20]. The authors show a positive impact on the accuracy of the ML model, reducing
performance latency and reducing computational complexity. In [21] the authors summarize the
research on DT, SVM, FNN and nearest neighbour models. They emphasize that proper feature
selection can reduce processing time and improve classification performance. They also discuss
the effects of feature normalization in the range ±1. In addition to feature selection, feature scal-
ing is often used. Without feature scaling, ML algorithms tend to weight higher values and treat
smaller values as lower values regardless of their units. Features with different scales can cause
the model to diverge, overestimate, underestimate, or ignore some parameters and decrease the
estimation efficiency. Normalization is a feature scaling technique that ensures each data point
has the same scale. It is useful when dataset does not contain outliers and it is known the distri-
bution of the dataset is non-Gaussian. The authors of [22] describe the Min-Max normalization
for network intrusion detection using ML models on the selected Kyoto 2006+ dataset. To avoid
bias from outliers in the unbalanced dataset, normalization is used before splitting and after the
dataset is balanced. Various supervised ML algorithms are widely used for anomaly-based clas-
sification of computer network traffic. The SVM model uses the hyperplane in the n-dimensional
space to classify instances [23, 24]. The instances on either side of the hyperplane are classified
differently. The k-NN algorithm identifies a sample based on its k neighbours and calculates
the distances between them. The parameter k affects the performance of the classifier. When
k is small, the model tends to overfit. A large value of k can lead to misclassification of the
instance [25]. The wk-NN model extends the k-NN model in such a way that the instance from
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the training set that is closest to the new instance has a higher weight in the decision than those
that are further away [26, 27]. In [28] the authors discuss the complexity of cognitive systems,
which is revealed in that the achievements of such system advantages form the machine learning
algorithms, including neural networks. The output of the neural network is determined by the
prediction probability and the classification threshold [29]. The computation in the network is
performed by passing the input data to compute the outputs and backward propagating the error
of the cost function to adjust the weights [30]. The DT model predicts the class label in the input
data following decision from the root to the leaf nodes. The branching conditions associated with
each node divide the possibility space into subsets [6].

A number of anomaly-based intrusion detection systems have been studied over the years
using various datasets, most of which are simulations of computer network behavior. The authors
examined, described and compared data from ADFA-LF/WD, AWID, CAIDA, CICIDS2017,
CSE-CIC-2018, ISCX2012, KDD CUP ’99, Kyoto 2006+, NSL-KDD, UNSW-NB15 and many
other datasets [22, 31–33]. The Kyoto 2006+ dataset is only one collected over real network
traffic and is intended solely for anomaly-based intrusion detection. The feature Label determines
whether the anomaly will be detected or not. As a result, the dataset serves as the basis for the
research presented in this paper. In this way, the binary logical operation XOR can be used to
determine the relationship between classifier outputs. The performance of the XOR rule is shown
in [16]. The authors describe the one-bit quantified data sensors that send the data to a fusion
center that uses the XOR rule to make a final decision based on two sensors working in parallel
at the same time.

3. Classification Scheme
A binary classification scheme presented in this paper consists of four steps. Three of these

are well-known preprocessing, classification, and postprocessing. In addition, this scheme con-
tains an additional XOR block for comparing the outputs of the classifiers.

3.1. Data collection

To conduct the experiments, we used the Kyoto 2006+ dataset as it was developed for evalu-
ating of the network-based IDSs. The dataset includes daily records of real network traffic data
collected from ∼350 honeypots, including two dark web sensors with ∼300 unused IP addresses
and other IDSs installed on five different computer networks inside and outside Kyoto University
[34]. It consists of 24 statistical, numerical and categorical features, 14 of which are derived from
the KDD Cup ’99 dataset and another 10 features used exclusively for the assessment and further
analysis of anomaly-based IDS [22, 26, 35] (see Table 1). The first part of the Kyoto 2006+
dataset contains ∼90 million instances recorded between 2006 and 2009. The second part, cov-
ering the period from November 2009 to December 2015, contains another 20 GB of data [36].
The dataset includes DoS, exploits, malware, port scans, and shell code attacks on honeypots,
but does not provide information on specific attacks. Instead, the feature Label is used to indi-
cate whether the attack exists or not [37]. The original data is marked with three labels: 1 for
normal sessions, –1 for known attacks, and –2 for unknown attacks. However, because unknown
attacks are very rare in a dataset (<1%), we gave known and unknown attacks the same label
(–1). The IDS Bro was used to convert data from packet-based traffic into a session format. The
IDS Bro is a signature and behavior-based analysis framework that provides information about
communication protocols and unusual network behavior [32]. The Bro event engine receives
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Internet Protocol (IP) packets and converts them into events that are targeted to the policy script
interpreter, which generates outputs. The problem with the Kyoto 2006+ is its size. In this study,
the problem is solved in a preprocessing step that removes all irrelevant features and scales the
relevant ones.

3.2. Feature selection

Feature selection is used to remove any extraneous features that might interfere with the
classification process. For that reason, all redundant and irrelevant data are eliminated [38].

Table 1. The Kyoto 2006+ dataset [26]
No Feature Description
1 Duration – basic The length of the connection (seconds).
2 Service – basic The connection’s server type (dns, ssh, other).
3 Source bytes – basic The number of data bytes sent by the source IP address.
4 Destination bytes – basic The number of data bytes sent by the destination IP address.

5 Count
The numbers of connections whose source IP address
and destination IP address are the same to those of the
current connection in the past two seconds.

6 Same srv rate % of connections to the same service in the Count feature.
7 Serror rate % of connections that have ‘SYN’ errors in Count feature.

8 Srv serror rate
% of connections that have ‘SYN’ errors in Srv count (% of
connections whose service type is the same to that of the
current connections in the past two seconds) features.

9 Dst host count

Among the past 100 connections whose destination IP
address is the same to that of the current connection,
the number of connections whose source IP address
is also the same to that of the current connection.

10 Dst host srv count

Among the past 100 connections whose destination
IP address is the same to that of the current connection,
the number of connections whose service type is also
the same to that of the current connection.

11 Dst host same src port rate
% of connections whose source port is the same to
that of the current connection in Dst host count feature.

12 Dst host serror rate
% of connections that have ‘SYN’ errors in
Dst host count feature.

13 Dst host srv serror rate
% of connections that have ‘SYN’ errors in
Dst host srv count feature.

14 Flag
The state of the connection at the time of
connection was written (tcp, udp).

15 IDS detection

Reflects if IDS triggered an alert for the connection; ‘0’ means
any alerts were not triggered and an Arabic numeral means
the different kind of alerts. Parenthesis indicates the number
of the same alert.

16 Malware detection

Indicates if malware, also known as malicious software,
was observed at the connection; ‘0’ means no malware
was observed, and string indicates the corresponding
malware observed at the connection. Parenthesis indicates

the number of the same malware.

17 Ashula detection.

Means if shellcodes and exploit codes were used in the
connection; ‘0’ means no shellcode or exploit code was
observed, and an Arabic numeral means the different kinds
of the shellcodes or exploit codes. Parenthesis indicates the
number of the same shellcode or exploit code

18 Label
Indicates whether the session was attack or not; ‘1’ means
normal. ‘–1’ means known attack was observed in the session,
and ‘–2’ means unknown attack was observed in the session.

19 Source IP Address

Means source IP address used in the session. The original
IP address on IPv4 was sanitized to one of the Unique Local
IPv6 Unicast Addresses. Also, the same private IP addresses
are only valid in the same month; if two private IP addresses
are the same within the same month, it means their IP
addresses on IPv4 were also the same, otherwise are different.

20 Source Port Number Indicates the source port number used in the session.
21 Destination IP Address It was also sanitized.
22 Destination Port Number Indicates the destination port number used in the session.
23 Start Time Indicates when the session was started.
24 Duration Indicates how long the session was being established.
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Table 2. Selected features from the Kyoto 2006+ dataset
No Feature No Feature No Feature
1 Count 4 Srv error rate 7 Dst host same src port rate
2 Same srv rate 5 Dst host count 8 Dst host serror rate
3 Serror rate 6 Dst host srv count 9 Dst host srv serror rate

The nine numerical features listed in Table 2 are the key features identified to conduct the
experiments presented in this article. All categorical features, connection duration features, and
statistical features are removed from the Kyoto 2006+ dataset. Only the feature Label remains
for further analysis. Network traffic is detected normally when Label = 1. The anomaly is
detected when Label = −1.

The problem that remains after this is that the features are not scaled. When features are at
drastically different scales, they can produce skewed and incorrect results and negatively impact
model evaluation. For these reasons, feature scaling is performed.

3.3. Feature scaling
Feature scaling is a data normalization technique used prior to classification to scale the

independent features in the same range of data. In this article, we present a TH scaling based on
min-max normalization, hyperbolic tangent function and LM damping strategy [39], [40]. The
min-max normalization scales features in the ranges [-1,1] or [0,1]. The normalization of the
instance x(i) over interval [a, b],∀a, b ∈ R is given by the expression

x(i)new = a+
(x(i)− xMin)(a− b)

xMax − xMin
, (1)

where x(i)new denotes a new instance, and xMax and xMin are minimum and maximum values,
respectively, of unscaled feature.

The hyperbolic tangent function tanh(x) = ex−e−x

ex+e−x is an S-shaped zero-centered function
bounded in [–1,1], with tanh(±1) ≈ ±0.7616.The gradient tanh(x)

′
= 1 − tanh(x)2 has a

narrow slope, with tanh(x)′x→0±ε|ε→0≈1. The part of the tanh function limited to ±0.7616,
can be approximated by a linear function f(x) ≈ x, x ∈ [−0.7616, 0.7616]. This can be used
to constrain the instances to the same symmetric fixed range [−0.7616, 0.7616], and the features
can be scaled as follows:

x(i)TH = tanh

(
x(i)− xMax+xMin

2
xMax−xMin

2

)
, (2)

where x(i)TH represents the scaled instance. In [41] the authors explain the differences between
exponential and Taylor-based calculations and provide details on calculation of the hyperbolic
tangent function for matrix calculations. They have also shown an increase in accuracy when
using the differential polynomial approach. Since minimum and maximum values of the features
are unknown, TH normalization is used to avoid biased and incorrect results and to speed up
classifier training. The main goal is to find an optimal value of the nonlinear, continuous, real-
valued loss function f : R → R using the damping strategy of the LM algorithm used to alternate
the gradient descent (GD) and the Gauss-Newton (GN) algorithms. The GD finds the optimal
value by iterating from an initial guess to the best value based on negative gradient. As the GD
reaches the optimal value, each step gets smaller and smaller. The GN algorithm is based on
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a generalization of the Newton’s method for solving nonlinear least-squares problems [42] in
which the Hessian matrix is approximated by using the Jacobian matrix.

In our previous work we have described the LM algorithm in detail. Here we present a brief
description of the pseudo-code of the update mechanism [43]. Let the input vector be x =
[x1 x2 · · ·xn]

T . The LM algorithm minimizes the Euclidean distance ||f(x)||2. The gradient
∇f(x) and the Hessian H(f(x)) are vectors of partial derivatives and matrix of second partial
derivatives of f(x), respectively, given as follows:

f(x) =

[
∂f(x)

∂x1

∂f(x)

∂x2
· · · ∂f(x)

∂xn

]
, H(f(x)) = ∇2f(x) =

=


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2

n


n×m

.

(3)

For any partial derivative gi =
∂fj(x)
∂xi

(i = 1 . . . n, j = 1 . . .m) in high-dimensional space
the gradient-matrix of partial derivatives with respect to each dimension is gj(x) = ∇fj(x) =
[g1,j(x) g2,j(x) · · · gn,j(x)]T and the Jacobian matrix J(f(x)) contains all first-order partial
derivatives of f , so that

J(f(x)) =


∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

∂fm(x)
∂x2

. . . ∂fm(x)
∂xn


n×m

, (4)

and the Hessian matrix is then determined as H(f(x)) = J(∇f(x))T .
The LM algorithm uses Taylor’s truncated formula to determine the iterate x(k+1), based on

k previous iterates x(1), x(2), . . . , x(k). The main idea of the algorithm is to find the optimal
solution x(k+1) ≈ xopt and f(x, xopt) ≈ f̂(x), i.e. to minimize both the first and second part of
the expression

||f̂(x, x(k))||2 + λ(k)||x− x(k)||, λ(k) > 0, (5)

where λ(k) denotes the damping factor, which varies with the step size. The LM algorithm is the
iterative algorithm that finds the optimal value iterate x(k+1) of the function f in terms of

x(k+1) = x(k) − ( H + λ(k)I)−1JT f(x(k)) = x(k) − (JTJ+ λ(k)I)−1JT f(x(k)), (6)

where I stands for the identity matrix. The point x(k) is considered stationary point if and only
if x(k+1) ≈ x(k). The LM algorithm starts at initial point x(0) and the initial damping factor
λ(0). During the iterative procedure λ(k) is adjusted. If λ(k) is too big x(k+1) is too close to
x(k) ), and progress is slow. Otherwise x(k+1) is far from x(k) and approximation is poor. The
LM algorithm acts as the GD algorithm if λ(k) → ∞, because H + λ(k)I → I, and as the
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GN algorithm if λ(k) → 0, because the iterate x(k) → xopt. The authors show in [41] that
the approaches based on Taylor series are accurate but computationally intensive. The update
mechanism for adjusting the damping parameter λ(k) is given by the following pseudo-code:

Pseudo-code of the LM algorithm update mechanism

1 if ||f(x(k+1))||2 < ||f(xk)||2, f(x(k+1)) is better than the current objective, accept new
x(k+1) and reduce λ(k),

2 otherwise increase λ(k) and do not update x(k); x(k+1) = x(k).

3.4. Binary classification
In supervised ML, binary classification is a process that divides a data set into two distinct

classes, one normal and one abnormal, by measuring a set of attributes. Table 3 shows the prop-
erties of the classifiers used for the experiments presented in this article: learning algorithm,
stopping criteria, prediction speed, memory usage, interpretability, and model flexibility. MAT-
LAB 2020a Classification Learner is used as a tool to train and test the classifiers [44]. The
gallery contains tunable models, trained with hyperparameter optimization. Depending on the
hyperparameters, ML models automatically optimize their parameter values using Bayeisan op-
timization, which minimizes model loss based on the selected validation options. The DT is
one of the most efficient classifiers, but almost unaffected by feature scaling. Optimizable hy-
perparameters of the DT model are maximum number of splits and split criterion. In our case,
the software searches among logarithmic-scaled integers in the range [1,max(2, n − 1)],where
n is the number of instances, and also searches under the Gini’s diversity index, Twoing’s rule,
and the maximum deviation reduction. In this case, maximum number of splits is 20. Nearest
neighbor classifiers are called lazy learners. The k-NN is one of the simplest classification algo-
rithms, identifying a sample based on k neighbors; when k is small, the model tends to overfit; if
k is large, the instance may be misclassified. The wk-NN algorithm introduced by Dudani [45]
is a modified version of the k-NN algorithm. In the decision, the instance of the first neighbor
gets the highest weight (1), while the kth instance gets the lowest weight (0). In the experiments
presented here, the hyperparameters that can be tuned are number of neighbors, distance met-
ric, distance weight, and binary split (true or false). The default number of neighbors in the
experiments presented here k ≤ 10. The software searches among logarithmic-scaled integers in
the range [1,max(2, round(n/2))],where n is the number of instances. The distance metric is
Euclidean and the weights are calculated as squared inverse distances. The Gaussian SVM pre-
sented in this paper offers high speed classification. The hyperparameters used for optimization
are: kernel function, kernel scale, multiclass method and data standardization. In our work we
used the Gaussian kernel function and software search among positive logarithmic-scaled values
in the range [0.001, 1000]. The One-vs-One multiclass method is used and data is standardized
by searching between true and false. The number of kernels is

√
P/4, where P is the number of

predictors.
A neural network is a black box-like structure that processes inputs to produce useful outputs

based on prediction probability and classification threshold. The calculation is performed by
propagating input data forward to calculate outputs and then propagating errors backward to
adjust weights. The main problem with neural networks is that for drastically different scales
of input data, the classification model diverges, underestimates, overestimates, or ignores some
parameters. In the experiments, the backpropagation-based FNN with one hidden layer is used.
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Table 3. Properties of the classifiers
DT SVM wk-NN FNN

Learning algorithm Medium tree Medium Gaussian
Euclidean, inverse
squared distance LM

Stopping criteria Maximum splits = 20 sqrt(P)/4
k=10, No. of instances

in the training set min MSE

Prediction speed Fast Fast Medium Fast
Memory usage Low Medium Medium Medium/High
Interpretability Easy Hard Hard Hard

Flexibility Medium Medium Hard Medium/High

The FNN contains nine inputs, nine neurons in the hidden layer, and one neuron at the output (9-
9-1), with hyperbolic tangent transfer functions applied to all neurons. The results are generated
based on the Mean Squared Errors (MSE) algorithm with the following default values: maximum
number of iterations=1000, magnitude of the gradient ≤ 10−5, and validation checks = 6. By
default, to train and test the models, MATLAB splits the data set into three subsets for training
(70%), validating (15%) and testing (15%) the models. Suggested default values are used to
evaluate the classifiers.

3.5. XOR detector of different decisions
In [16] the authors examine the performance of the XOR rule in detecting presence or absence

of a deterministic signal. The authors present two sensors assumed to be unequal with identical
marginal distribution for the noise components. This concept, shown in Fig. 1, as well as the
main principles of parallel computing [46] are used to detect different decisions. The aim is
to compare the classification ability of two high-precision binary classifiers working in parallel
at the same place in the computer network. This is a decentralized detection system with a
parallel topology [47], in which both the wk-NN and the FNN serve as sensors. To classify
network traffic as normal or abnormal, classifiers detect an anomaly or consider network behavior
normal. However, every now and then one of the classifiers detected an anomaly while the other
determined that the network traffic is normal, and vice versa. For this reason, classifier results
are subjected to the XOR operation. In the case of independent decisions, when each sensor
makes its decision based on the classification rule, the XOR operation used as the fusion rule
becomes meaningful. By performing the XOR operation on the predicted outputs, conflicting
decisions can be detected. If one of the outputs is zero, the result is true; otherwise it is false.
The outputs of the classifiers are outwk NN and outFNN for wk-NN and FNN, respectively.
The result of the XOR operation performed on the corresponding input data is then out(i) =
xor(outwk−NN (i), outFNN (i)). The value of out(i), which can be logically true (1) or false
(0), is passed to the accumulator register, which is first cleared to zero and contains the sum of
the results of the (p) XOR operation, where p can vary allowing for more accurate results.

The advantages of the accumulator register are shorter instructions and less memory storage
since the accumulator always contains an operand. Each further output out(i) is thus added
to the contents of the accumulator. Another benefit is that the instruction cycle takes less time
to process because the accumulator saves time fetching instructions from memory. Since the
number of decisions varies and can be set by the user, the sensitivity of the additional alerts is
determined not only by the detection of conflicting decisions, but also by the company’s need for
more granular protection mechanisms. It should be noted that while the XOR-based detector can
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help in decision making, it cannot predict the likelihood of a particular event occurring. Its sole
purpose is to provide additional warnings to the decision-making bodies.

Fig. 1. Conceptual design of XOR detector.

4. Experimental Results
To compare the effects of feature selection and feature scaling on binary classification for all

classifiers described, experiments are performed as follows. Models are evaluated using MAT-
LAB Classification Learner. First, a daily record from the Kyoto 2006+ dataset with ∼ 60, 000
instances is stripped of Not-a-Number (NaN) values that MATLAB does not recognize. Then all
irrelevant features are removed and ∼ 57, 300 instances is used to train and test the models; 70%
is used for training, 15% is used for validation (to show if the validation performance is consis-
tent with the training one [48]), and 15% is used for testing the models. Feature Label is used to
detect anomalies; if Label = 1 the instance is classified as ‘normal’, while if Label = −1, the
instance is classified as ‘anomaly’.

Then the issue of dataset size is addressed by using feature selection to reduce the Kyoto
2006+ dataset from 24 to nine numerical features recognized as the most relevant for classifier
evaluation. The literature implies that users who are knowledgeable about their dataset can select
features that meet some criteria based on their knowledge and experience [49, 50]. According to
this principle, feature selection proposed in this paper is performed as follows: (1) Remove all
categorical features (17 features are left for model training: 1, 3-17, 24), (2) Cut out all statistical
features and features for more analyses planned. Finally, features 5-13 are used to evaluate the
model. Feature Label is used to indicate the presence of an attack. The original record has three
labels: 1 for standard sessions, −1 for known attacks, and −2 for unknown attacks. However,
since unknown attacks occur sporadically in the data set, we also assign the label −1 to unknown
attacks. In our previous work, we showed the detailed description of feature selection [21]. Here
we illustrate the impact on feature selection for 17 and 9 features for three-day records, recorded
in 16th May 2009, 12th August 2008 and 14th February 2007, respectively (see Table 4). The
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results are presented in terms of accuracy and processing time. Accuracy (ACC) is defined as the
ratio of the total number of correctly classified instances to the total number of results:

ACC =
TP + TN

TP + TN + FP + FN
. (7)

True Positive (TP) indicates normal network behavior has been correctly classified. True
Negative (TN) determines the correctly classified negative results. The False Positive (FP) result
determines the misclassification of normal network behavior. False Negative (FN) denotes an
abnormality that has been misclassified as ‘normal’. The processing time results from the sum of
the training time and test time of the models (tp = ttrain + ttest). The accuracy and processing
time for 17 and 9 features are labeled ACC-17, tp-17, ACC-9, and tp − 9.

The results show the significantly shorter processing time when nine features were used for
classifier evaluation compared to the processing time when 17 features were used. At the same
time, the accuracy of the DT model dropped to ∼ 0.001, followed by the SVM model to ∼ 0.026
and the k-NN and wk-NN models to ∼ 0.029. For these reasons, nine features are believed to
be sufficient to be used in experiments on the effects of feature scaling. It should be noted that
the feedforward neural network was not used in this part of the experiments as it only deals with
numerical features.

Three feature scaling techniques are used: TH, Min-Max in range [0,1] and Min-Max in
range [–1,1]. The experiments are conducted to the instances recorded on 14th February 2007.
The importance of FP and FN is determined by the F1-score, a harmonic mean of two variables:
Precision (8), which determines how many of total predicted positive results are actually posi-
tive, and Recall (9), which determines how many of the total predicted positives were correctly
predicted:

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
. (9)

The F1-score can be calculated as follows:

F1− score =
1

1
Precision + 1

Recall

. (10)

Table 5 shows the classification results for all models in terms of Accuracy, processing time
and F1-score.

First, Min-Max normalization in range [0,1] is applied. According to the results, the FNN
is the most accurate model. The DT has the shortest processing time but it is not the most
accurate classifier. In terms of accuracy, the SVM performs poorly. The wk-NN is very slow
but extremely accurate model. Second, to avoid problems caused by very long or very small
derivatives, Min-Max normalization in range [–1,1] is used. However, this normalization does
not affect the classification results. The problem of long processing time remains. Third, TH
scaling is applied. All features are scaled in the same symmetrical range of ±0.7616. Compared
to other scaling techniques, the processing time for all classifiers is more than twice as using
Min-Max normalization in [0,1] and [–1,1] ranges. The results support the hypothesis that TH
scaling significantly accelerates training. With the exception of SVM, all models show high
decision accuracy. The F1-score indicates that although the Kyoto 2006+ dataset is unbalanced,
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Table 4. Accuracy and processing time for 17 and nine features

Instances Model ACC-17 tp–17 [s] ACC-9 tp–9[s]

128,740
(16/05/2009)

k-NN 0.986 682 0.982 194
wk-NN 0.988 690 0.981 195

DT 0.979 379 0.978 281
SVM 0.998 9.5 0.972 3.3

93,999
(12/08/2008)

k-NN 0.994 354 0.965 109
wk-NN 0.995 352 0.965 109

DT 0.984 149 0.980 112
SVM 0.995 7 0.975 2.3

58,317
(14/02/2007)

k-NN 0.993 134 0.991 32
wk-NN 0.994 134 0.992 32

DT 0.992 37 0.991 34
SVM 0.995 4.4 0.989 1.7

this normalization improves classification in terms of both accuracy and processing time. The
wk-NN model shows the best F1-score results and the highest accuracy. Finally, the results show
that none of the scaling techniques have any impact on the DT model. Overall, the results show
that TH scaling has a significantly positive effect on the processing time of the models, with a
slight decrease in F1-score and accuracy.

Table 5. Accuracy, processing time and F1-score of binary classifiers; TH scaling, and Min-Max
normalization in the ranges [0,1] and [–1,1]

TH Min-Max ([0,1]) Min-Max ([–1,1])
Model Accuracy tp [s] F1-score Accuracy tp [s] F1-score Accuracy tp [s] F1-score
FNN 0.994 5 0.989 0.9953 11 0.993 0.993 12 0.990

wk-NN 0.994 5 0.992 0.9948 103 0.993 0.996 105 0.993
DT 0.994 2 0.992 0.9947 3 0.991 0.994 2 0.991

SVM 0.991 27 0.987 0.9916 37 0.989 0.992 43 0.989

Table 6. The results of the detection about opposing decisions about anomalies in the computer
network traffic

Number of instances Number of different decisions Different decisions [%]
57300 (03/02/2007) 1160 2.02
57300 (27/02/2007) 460 0.80
58300 (14/02/2007) 100 0.17

According to the results, high-precision classifiers should recognize network traffic equally.
To examine this expectation, the fastest FNN and the most accurate wk-NN model decisions
are compared. It is shown that in some cases one classifier detects anomalies while the other
classifies network traffic as normal and vice versa.

A high percentage of conflicting decisions can be very useful to trigger additional alerts
against potential network attacks when sensitive data needs to be protected. This is especially
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true for previously unknown attacks or malicious behavior undetected by signature-based IDS.
The model used for the experiments is based on bit-by-bit XOR logic operation performed on
the outputs of wk-NN and FNN operating in parallel, scanning unknown network traffic simulta-
neously to detect the number of opposing decisions.

To demonstrate the functionality of the presented detector, we ran experiments on three-day
records of unknown data from the Kyoto 2006+ dataset, containing 57,300, 57,300, and 58,300
instances, recorded in 3rd, 14th and 27th February 2007, respectively. The results are shown in
Table 6.

A higher percentage of different decisions indicates greater classification uncertainty, which
is not only due to the classifiers’ decisions but can also be caused by data errors, unidentified
attacks, and other factors, all of which that contribute to decision uncertainty. The results show
that the number of different decisions is not related to the size of the daily record. Accordingly,
the detector can help resolve the uncertainty by calculating the percentage of conflicting classifier
decisions. However, the decision-making bodies should decide how to react to the information
about possible undetected intruders.

5. Conclusions
This article presents research results to improve binary classification. Feature selection and

feature scaling techniques are applied to improve accuracy and reduce processing time of four
ML-based binary classifiers. Three normalization techniques are applied to the relevant features
from the Kyoto 2006+ dataset. All models have proven to be very accurate. Processing time is
shortened by TH scaling. The XOR-based detector is used to determine the number of opposing
decisions of the FNN and wk-NN models, which work in parallel and serve as anomaly sensors.
The percentage of different decisions does not depend on the number of instances and ranges
from 0.17 to 2.02.
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