
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 16, Number 1, 2013, 3–9

A Catalytic P System with Two Catalysts
Generating a Non-Semilinear Set

Petr SOSÍK

Research Institute of the IT4Innovations Centre of Excellence,
Faculty of Philosophy and Science, Silesian University in Opava

74601 Opava, Czech Republic
and

Departamento de Inteligencia Artificial, Facultad de Informática,
Universidad Politécnica de Madrid, Campus de Montegancedo s/n,

Boadilla del Monte, 28660 Madrid, Spain

E-mail: petr.sosik@fpf.slu.cz

Abstract. Membrane computing is a relatively young but fast emerging

bio-inspired computing paradigm, nowadays with many branches and applica-

tions. Its original computing model is the catalytic P system. Although it was

proven already in 2005 that catalytic P systems with two catalysts are com-

putationally universal [2], no simple example of such a P system generating a

non-semilinear set was known. The present paper fills this gap and provides such

an example with 54 rules. It is expected, however, that this number of rules can

be reduced and the minimal number of rules to generate a non-semilinear set in

a catalytic P system with two catalysts remains open.

Key words: Catalytic P System, Membrane Computing, Non-Semilinear Set.

1. Introduction

Membrane computing belongs to the family of computational models inspired by
nature, or more precisely, by the structure of living cells and by the way the biochem-
ical substances are processed within and moved between membrane-bounded regions.
Since the first model of membrane computing was introduced in [4], many different
models (called P systems) belonging to the membrane computing family arose. P
systems principles include, e.g., molecular synthesis within cells, selective particle

4 P. Sośık

recognition by membranes, controlled transport through protein channels, membrane
division, membrane dissolution and many others. Their common feature is that they
consist of membrane-bounded areas (called regions or cells) often hierarchically ar-
ranged. Multisets of objects serving as information medium are placed inside each
cell. The processes are modeled in P systems by means of operations on multisets in
separate cells.

Catalytic P systems represent the original model of P systems introduced in the
seminal journal paper [4]. Objects in cells of catalytic P systems can evolve due to
evolution rules, they can also pass through membranes. All objects evolve at the same
time, in parallel; in turn, all membranes are active in parallel. If the objects evolve
alone, then the system is said to be non-cooperative; if there are rules which specify
the evolution of several objects at the same time, then the system is cooperative;
an intermediate case is that where certain objects — catalysts, appear together with
other objects in evolution rules and they are not modified by the use of the rules.

It was shown already in [6] that P systems with non-cooperative and catalytic rules
are computationally universal. The proof used a construction with 8 catalysts. Later
in [2] the minimal number of necessary catalysts to reach computational universality
was improved to 2. It remains still an open problem whether the computational
completeness can be reached with one catalysts only. The most recent discussion and
results related to this topic can be found in [1]. Although the result [2] was published
eight years ago, no simple example of a P system with two catalysts generating a
non-semilinear set was known until now. In this note we present a P system with
one membrane, two catalysts and 54 rules and we prove that the generated set is
non-semilinear. It is supposed that the number of 54 rules is not minimal and could
be possibly diminished.

2. Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under the
operation of concatenation, i.e., containing all possible strings over V. The empty
string is denoted by λ. A multiset M with underlying set A is a pair (A, f) where
f : A → N is a mapping. If M = (A, f) is a multiset then its support is defined
as supp(M) = {x ∈ A | f(x) > 0}. A multiset is empty (resp. finite) if its support
is the empty set (resp. a finite set). If M = (A, f) is a finite multiset over A, and

supp(M) = {a1, . . . , ak} then it can also be represented by the string a
f(a1)
1 . . . a

f(ak)
k

over the alphabet {a1, . . . , ak}. Nevertheless, all permutations of this string precisely
identify the same multiset M . The next definition cites Def. 4.1 in Chapter 4 of [5].

Definition 1. An extended catalytic P system of degree m ≥ 1 is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, i0) where:

1. O is the alphabet of objects;

2. C ⊆ O is the alphabet of catalysts;

3. µ is a membrane structure of degree m with membranes labeled in a one-to-one
manner with the natural numbers 1, 2, . . . ,m;

A Catalytic P System with Two Catalysts Generating a Non-Semilinear Set 5

4. w1, . . . , wm ∈ O∗ are the multisets of objects initially present in the m regions
of µ;

5. Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O associated with the
regions 1, 2, . . . ,m of µ; these evolution rules are of the forms ca → cv or
a → v, where c is a catalyst, a is an object from O \ C, and v is a string from
((O \ C)× {here, out, in})∗;

6. i0 ∈ {0, 1, . . . ,m} indicates the output region of Π.

The membrane structure and the multisets in Π constitute the initial configuration
of the system. A transition between configurations is governed by the application of
the evolution rules, which is done in parallel: all objects, from all membranes, which
can be the subject of local evolution rules, have to evolve simultaneously.

The application of a rule u → v in a region containing a multiset M results in
subtracting from M the multiset identified by u, and then in adding the multiset
identified by v. The objects can be eventually transported through membranes due
to targets in and out. We refer to [5] for further details and examples.

The system continues parallel steps until there remain no applicable rules in any
region of Π. Then the system halts. We consider the number of objects from O \ C
contained in the output membrane i0 at the moment when the system halts as the
result of the underlying computation of Π. (The system is called extended since the
catalytic objects in C are not counted to the result of computation.) The set of results
of all computations possible in Π is called the set generated by Π and it is denoted by
N(Π).

A register machine (also called counter machine) is the computing model intro-
duced by Minsky [3]. The machine uses a fixed number of registers for storing arbi-
trarily large nonnegative integers. Computation is performed by a program consisting
of numbered instructions of several simple types. The basic instruction types we use
here are:

(ADD(r), i, j) – add 1 to the contents of the register r and choose nondeterministi-
cally to continue with the instruction labeled i or j;

(SUB(r), i, j) – if the contents of the register r is nonzero, then subtract 1 from it
and continue with instruction i, else continue with instruction j;

HALT – halt the machine.

A deterministic variant of the machine with i = j for all instructions of type
(ADD(r), i, j) can be used to compute any partial recursive function f : Nn −→ Nm.
Starting with (x1, . . . , xn) in certain register(s), the machineM computes f(x1, . . . , xn) =
(y1, . . . , ym) if it reaches the final instruction HALT and (y1, . . . , ym) are contained
in specified register(s). If the instruction HALT is never reached, then the output
remains undefined.

In this paper we use the non-deterministic variant defined above. It starts with
all registers empty. The set of all possible output m-tuples (y1, . . . , ym) contained

6 P. Sośık

in pre-defined registers when the machine halts is called the set generated by the
machine.

3. Main result

In this paper we use extended catalytic P systems from Definition 1, where the
terminal set of output objects is formed by all non-catalytic objects. No cooperative
rules, bistable catalysts, priorities or similar enhancements are considered.

Theorem 1. Extended catalytic P systems with a single membrane, two catalysts
and 54 rules can generate non-semilinear sets of numbers.

Proof. We construct an example of a catalytic P systems with two catalysts and 54
rules generating the set {2n−2n |n ≥ 2}. This set is generated by a non-deterministic
register machine with three registers, starting with all registers empty, running the
following program which stores the result in register 3:

1: (ADD(1), 2, 8)
2: (SUB(1), 3, 5)
3: (ADD(2), 4, 4)
4: (ADD(2), 2, 2)
5: (SUB(2), 6, 1)
6: (ADD(1), 7, 7)
7: (ADD(3), 5, 5)
8: HALT

The register machine program described above works as follows: The first ADD
instruction increments register 1 and then it decides non-deterministically whether the
computation continues or whether it halts. In the former case the content of register
1 is emptied and duplicated to register 2 (instructions 2,3,4) and then the content
of reg. 2 is copied to reg. 1 and added to reg. 3 (instructions 5,6,7). The whole
cycle is repeated until a jump to instruction HALT is nondeterministically chosen in
instruction 1.

We construct a catalytic P system Π following precisely the proof of Theorem 4.1
in Chapter 4 of [5]. The resulting catalytic P system Π simulates the non-deterministic
register machine described above and it generates a representation of contents of its
registers by the corresponding number of objects o1, o2 and o3, respectively.

Π = (O, {c1, c2}, [1]
1
, w,R, 1),

O = {#} ∪ {c1, c′1, c′′1 , c2, c′2, c′′2} ∪ {o1, o2, o3}
∪ {pj , p̃j , p′j , p′′j , p̄j , p̄′j , p̄′′j , p̂j , p̂′j , p̂′′j | j = 2, 5}
∪ {pj , p̃j | j = 1, 3, 4, 6, 7, 8},

R = {x → # | x ∈ {pj , p̃j , p′j , p′′j , p̄j , p̄′′j , p̂j , p̂′′j | j = 2, 5}}
∪ {x → # | x ∈ {c′1, c′′1 , c′2, c′′2}} ∪ {# → #}

A Catalytic P System with Two Catalysts Generating a Non-Semilinear Set 7

∪ {c1p8 → c1, c2p̃8 → c2}
∪ {c1p̃j → c1 | j = 1, 3, 4, 6, 7}
∪ {c2p1 → c2p2p̃2o1, c2p1 → c2p8p̃8o1,

c2p3 → c2p4p̃4o2, c2p4 → c2p2p̃2o2, c2p6 → c2p7p̃7o1, c2p7 → c2p5p̃5o3}
∪ {crpj → crp̂j p̂

′
j , crpj → crp̄j p̄

′
j p̄

′′
j , cror → crc

′
r, crc

′
r → crc

′′
r ,

c3−rc
′′
r → c3−r, crp̂

′
j → cr#, c3−rp̂

′
j → c3−rp̂

′′
j , crp̂

′′
j → crpkp̃k,

crp̄j → cr, c3−rp̄
′′
j → c3−rp

′′
j , c3−rp

′′
j → c3−rp

′
j ,

crp
′
j → crplp̃l | (j, r, k, l) = (2, 1, 3, 5), (5, 2, 6, 1)}

∪ {c2y → c2 | y ∈ {p̃2, p̂2, p̄′2}}
∪ {c1y → c1 | y ∈ {p̃5, p̂5, p̄′5}},

w = c1c2p1p̃1.

The above construction is correct by Theorem 4.1 in [5]. The total number of rules
is 64. Notice that the P system Π automatically resets registers 1 and 2 when the
instruction HALT is reached, removing all objects o1 and o2 by the rules cror → crc

′
r,

crc
′
r → crc

′′
r and c3−rc

′′
r → c3−r, for r = 1, 2. Hence there must be another register 3

to collect the result of computation.
Observe now the construction provided in [5] is general for an arbitrary register

machine program and it can be simplified in cases of specific sequences of instructions.
Notice the following facts whose detailed justification can be found in [5]:

• the configuration of the P system Π at the beginning of simulation of any instruc-
tion labeled i is c1c2pip̃io

j
1o

k
2o

l
3, where j, k, l ≥ 0 are contents of the registers;

• simulations of subsequent instructions do not overlap in time;

• objects pi, p̃i identifying the instruction i to be simulated are only produced in
the last step of the previous instruction simulation.

Therefore, any instruction of the form i: (ADD(r), j, j) can be simulated in such a
way that:

1. the last rule simulating the previously executed instruction produces the multi-
set orpj p̃j instead of pip̃i;

2. the rules originally simulating i: (ADD(r), j, j) are omitted.

Similarly, observe that the instruction HALT in the above program is simulated by
the rules c1p8 → c1, c2p̃8 → c2, and then the above mentioned rules which eliminate
all objects o1 and o2 follow until the system Π halts. If the last rule of the previously
executed instruction 1: (ADD(1), 2, 8) just does not produce objects p8, p̃8, then the
two rules simulating HALT can be omitted, replacing the computation

c1c2p1p̃1o
j
1o

k
2o

l
3 ⇒ c1c2p8p̃8o

j+1
1 ok2o

l
3 ⇒ c1c2o

j+1
1 ok2o

l
3 ⇒ . . .

8 P. Sośık

by

c1c2p1p̃1o
j
1o

k
2o

l
3 ⇒ c1c2o

j+1
1 ok2o

l
3 ⇒ . . .

Any other application of rules of Π would lead to an introduction of the trap symbol
#. Therefore, in the case of our program we can:

1. (a) remove the rules c1p̃3 → c1, c1p̃4 → c1, c2p3 → c2p4p̃4o2, c2p4 → c2p2p̃2o2,
implementing instructions 3: (ADD(2), 4, 4), 4: (ADD(2), 2, 2), and

(b) modify the rule c1p̂
′′
2 → c1p3p̃3 which is a part of implementation of

2: (SUB(1), 3, 5) to the form c1p̂
′′
2 → c1p2p̃2o2o2;

2. (a) remove the rules c1p̃6 → c1, c2p6 → c2p7p̃7o1, c1p̃7 → c1, c2p7 → c2p5p̃5o3,
implementing instructions 6: (ADD(1), 7, 7), 7: (ADD(3), 5, 5), and

(b) modify the rule c2p̂
′′
5 → c2p6p̃6 which is a part of implementation of

2: (SUB(2), 6, 1) to the form c2p̂
′′
5 → c2p5p̃5o1o3;

3. (a) remove the rules c1p8 → c1, c2p̃8 → c2, implementing 8: HALT, and

(b) modify the rule c2p1 → c2p8p̃8o1 which is a part of implementation of
1: (ADD(1), 2, 8) to the form c2p1 → c2o1.

These modifications allow to save ten rules (and some objects), getting us to the final
number of 54 rules. The resulting P systems gets the form:

Π = (O, {c1, c2}, [1]
1
, w,R, 1),

O = {#} ∪ {c1, c′1, c′′1 , c2, c′2, c′′2} ∪ {o1, o2} ∪ {p1, p̃1}
∪ {pj , p̃j , p′j , p′′j , p̄j , p̄′j , p̄′′j , p̂j , p̂′j , p̂′′j | j = 2, 5}

R = {x → # | x ∈ {pj , p̃j , p′j , p′′j , p̄j , p̄′′j , p̂j , p̂′′j | j = 2, 5}}
∪ {x → # | x ∈ {c′1, c′′1 , c′2, c′′2}} ∪ {# → #}
∪ {c1p̃1 → c1, c2p1 → c2p2p̃2o1, c2p1 → c2o1}
∪ {crpj → crp̂j p̂

′
j , crpj → crp̄j p̄

′
j p̄

′′
j , cror → crc

′
r, crc

′
r → crc

′′
r ,

c3−rc
′′
r → c3−r, crp̂

′
j → cr#, c3−rp̂

′
j → c3−rp̂

′′
j ,

crp̄j → cr, c3−rp̄
′′
j → c3−rp

′′
j , c3−rp

′′
j → c3−rp

′
j ,

crp
′
j → crplp̃l | (j, r, l) = (2, 1, 5), (5, 2, 1)}

∪ {c1p̂′′2 → c1p2p̃2o2o2, c2p̂
′′
5 → c2p5p̃5o1o3}

∪ {c2y → c2 | y ∈ {p̃2, p̂2, p̄′2}}
∪ {c1y → c1 | y ∈ {p̃5, p̂5, p̄′5}},

w = c1c2p1p̃1.

2

A Catalytic P System with Two Catalysts Generating a Non-Semilinear Set 9

4. Conclusion

We have shown that an extended catalytic P systems with a single membrane,
two catalysts and 54 rules can generate non-semilinear sets of numbers. However,
this result is barely optimal in terms of simplicity of the P system, particularly the
minimal number of necessary rules.

For example, we conjecture that a significant simplification of implementation of
instructions SUB can be achieved using the fact that for each register there exists
only one instruction SUB decrementing it. Another promising way is to abandon
the constructions used in [2, 5] and to construct a catalytic P system generating a
non-semilinear set directly “from the scratch”.

Acknowledgements. I am indebted to Gheorghe Păun and Rudi Freund for their
valuable comments to the final version of the paper.

This work was supported by the Ministerio de Ciencia e Innovación, Spain, un-
der project TIN2012-36992, by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), and by the
Silesian University in Opava under the Student Funding Scheme, project SGS/7/2011.

References

[1] Freund R., Purely catalytic P systems: Two catalysts can be sufficient for computa-
tional completeness, in A. Alhazov et al., editor, 14th International Conference on Mem-
brane Computing, pp. 153–166, Chisinau, 2013. Institute of Mathematics and Computer
Science, Academy of Sciences of Moldova.

[2] Freund R., Kari L., Oswald M., Sośık P., Computationally universal P systems
without priorities: two catalysts are sufficient, Theoretical Computer Science, 330,
pp. 251–266, 2005.

[3] Minsky M., Computation – Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, New Jersey, 1967.

[4] Păun G., Computing with membranes, J. Comput. System Sci., 61, pp. 108–143, 2000.

[5] Păun G., Rozenberg G., Salomaa A., editors, The Oxford Handbook of Membrane
Computing, Oxford University Press, Oxford, 2010.

[6] Sośık P., Freund R., P systems without priorities are computationally universal, in
G. Păun et al., editor, Membrane Computing. International Workshop, WMC-CdeA
2002, volume 2597 of Lecture Notes in Computer Science, pp. 400–409. Springer, Berlin,
2003.

