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Abstract. We explore a variant of a recently introduced operation on
images, which provides an adequate basis for modeling computations in which
concurrent agents cooperatively construct (pointed) pictures. In this setting,
concurrent agents generate languages of multi-dimensional words on partially
ordered alphabets through a simple operation of overlapping, constrained by
the order imposed on the alphabet. The overlapping operation is proved to be
a powerful tool for picture generation in general. The operation is parametric
with respect to the composition law, and we show how some simple requests
on the behavior of this law provide a meet-semilattice structure to the class of
pointed pictures. This feature allows their use in building a model for concurrent
processes in the spirit of process algebras.

1. Introduction

Formal models of 2-dimensional languages usually suffer by the lack of an adequate
algebraic framework in which to set the typical matching and replacing processes
involved in rewriting. Such processes are suitably represented in one-dimensional
rewriting due to the monoid structure deriving from the properties of the concatena-
tion operation, or in high-level replacement approaches exploiting pushouts in (weak)
adhesive high-level categories [16] and the gluing operation. In general, these models
implicitly refer to some underlying spatial structure providing support to the execu-
tion of computations. Hence, Chomsky-like grammars work on linear strings, term
rewriting exploits trees, parallel models, such as cellular automata, work on regu-
lar meshes, and distributed computing on some type of network. For each of these
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models, adequate algebraic or categorical settings are available. A particular defi-
ciency under this respect seems, on the contrary, to plague 2-dimensional rewriting.
In particular, vertical and horizontal versions of traditional 1-dimensional concatena-
tion provide a simple analogous for grammar-style rewriting, but their being partial
functions makes the consequent algebraic structure quite poor. On the other hand,
most rewriting processes implicitly rely on some notion of superposition, which is not
sufficiently supported by 2-dimensional forms of concatenation.

In [6] two new operations, of shifting and superposition, were shown to provide an
adequate account of several aspects of 2-dimensional rewriting. In [2], we proposed to
equip pictures with some additional information about their availability for subsequent
applications of the operation. This allowed the definition of a single operation on pairs
of pointed pictures, thereby imposing a monoid structure on them. Moreover, the
resulting structure can be uniformly extended to any type of n-dimensional structure.

In this paper, we exploit a simpler version of pointed pictures, which reduces the
amount of additional information, but is still sufficient to model the important phe-
nomenon of cooperative construction of pictures by different agents. In this setting,
a picture is seen as the space on which different agents may contribute to its final
appearance. Agents can work concurrently on different parts of the image, with-
out being forced to act sequentially on contiguous zones, or take turns according to
some policy. However, overlapping contributions can also be managed according to
some partial ordering imposed on the alphabets from which the pictures are formed.
Moreover, we provide some axioms required for the definition of the overlapping op-
erations, through which we can parameterize operations according to the law used for
composing contributions from different agents. A nice algebraic structure still results,
namely that of meet-semilattice.

After analyzing related work on pictures in Section 2, Section 3 motivates the
approach through some examples of concurrent computation on pictures. Section 4
elaborates on overlapping of pointed (multi-dimensional) words, while Section 5 dis-
cusses the power of the combination of orders on alphabets, overlapping and filtering
conditions, by simulating several language definition devices for one-dimensional and
double stranded strings, and for pictures. Finally, Section 6 concludes the paper and
points to topics for future work.

2. Related work

The exploration of the algebraic characterization of 2-D sentences and languages
started with Kirsch [14] and Dacey [7], imposing some form of juxtaposition (which
in the 1-D case reduces to common concatenation) on the bidimensional structure
of images. Kirsch proposes elementary patterns in which specific symbols indicate
the role they will play in a figure obtained through a bidimensional grammar. Rule
application consists of the superposition of the right-hand side pattern on a context
in which the left-hand side pattern occurs. Kirsch shows how to generate triangles,
while Dacey generalizes the approach to several figures and shows a group structure
for languages describing polygons related by rotations.
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The use of a notion of superposition as an equivalent to juxtaposition originated
a number of picture rewriting systems e.g. array grammars, with different types of
control [17].

In another direction, horizontal and vertical versions of concatenation were pro-
posed in [21], giving rise to typical forms of rewriting in which a regular grammar
is used to generate a starting horizontal word, from which a context free grammar
starts producing columns [20]. The problem with these versions of concatenation is
that they are partial functions, being applicable only to pictures of compatible sizes,
along the horizontal or the vertical axis. An algebraic characterization of pictures
based on horizontal and vertical concatenation has been given in the form of doubly
ranked monoids constructed from alphabets of bidimensional elements, in which each
individual operation is associative and compatible with each other [9]. Diagonal ver-
sions have also been studied to allow concatenation of pictures of triangular, rather
than rectangular, shape [10]. A survey on these topics, with particular emphasis on
the notion of recognisability of picture languages, is in [8].

The proposal of pointed pictures in [2] stems from the limitations of a previous
proposal based on a pair of operations, called shift and sup, which exploits the in-
troduction of the transparent symbol. Their properties, in particular with respect to
their generating power, were studied in [6].

Pointed pictures exploit an analogous of attachment positions for contour curves,
introduced by Shaw to allow a form of curve composition where the head of an element
is attached to the tail of another [19]. In particular, [15] introduces pointed drawings,
described by a string of directions and a pair of positions, called the departure and
arrival points of the drawing. The concatenation (superposition) of two drawings is
possible only if the position of the arrival point of the first coincides with that of the
starting point of the second. Figures are classes of equivalence of drawings modulo
translation, and concatenation is obtained by taking a pair of translated versions such
that the coincidence condition on arrival and departure points is satisfied. For pointed
figures, concatenation is a total and associative function. The resulting algebraic
structure is a finitely generated inverse monoid, the set of generators being coloured
pixels with all possible positions for the arrival and departure points [15].

An extensive study on the (im)possibility of recovering concatenation of pictures,
as distinct from figures, in 2-D by simply enriching them with attachment points, or by
allowing placement only over well-behaved paths, is in [4]. The proposal in [2] avoids
such limitations, as pointed pictures bring with them information on attachment
points and picture orientation, but allows their translation and rotation.

3. Collaborative construction of images

The definition of a suitable setting for superposition operations is increasingly
important, as collaborative construction of spatially-related information is attracting
attention. Applications such as GoogleEarth or GoogleMap provide a widely exploited
support for the addition of proprietary or public information. In a completely differ-
ent arena, real or virtual whiteboards are increasingly used in collaborative creative
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settings, to exchange ideas, illustrate variants of a solution, annotate designs. Leisure
applications are also gaining diffusion, such as Microsoft Surface, in which an active
surface acts as a medium for the presentation and interactive exchange of pictures.

In all these cases, problems arise as to which information should be presented on
the visible surface of the application, how can a participant get control of an area,
how to resolve possible conflicts in case of overlapping contrasting information. We
illustrate these problems through some motivating examples, abstracting the surface
on which the collaborative information can be constructed as a picture, a function
m: RxC — X, where R and C are initial segments of the natural numbers, and X
is a finite alphabet of symbols, including a special symbol 7, called the transparent
symbol. Moreover, we assume the existence of a partial order < in ¥, such that
Vo € ¥\ {7}, 7 < 2. The ordering is used to solve possible conflicts in the colouring
of a pixel, so that a position (r,¢) € R x C coloured with a symbol = can change its
colour to a symbol y only if x < y.

We present a cooperative version of the 4-colour problem, i.e. finding a colouring
of a map with K > 4 regions, using up to four colours, so that no two adjacent
regions are coloured in the same way. We model this as a game in which 4 agents,
each endowed with a colour and with a private set of pictures, take turns in colouring
a different region of a shared picture at each time. Colouring a region is modelled
as overlapping one of the pictures available to the agent to the current state of the
game, representing the move for the agent at that turn. Hence, we consider ¥ =
{¢; |i=1,...,4,} U{r}, where 7 indicates a pixel in the shared picture which has
not been coloured yet, or a pixel in a private picture of an agent that the agent is
not entitled to colour. We assume a flat ordering on ¥, i.e. 2 47 = fy € ¥, 2 < v,
meaning that no agent can colour a pixel already coloured in the shared picture.
Initially, the shared image II has all pixels transparent. Each agent a;, 1 = 1,...,4
possesses a set of pictures II; = {r},..., 7%}, with the same size as II. Each 7 € II;
has all pixels transparent, except for region j, which is coloured with ¢; € X. If a
complete colouring of II is reached, i.e. II has no transparent pixel, the winner is the
agent which coloured the overall maximum surface; otherwise, there is no winner. In
a variant of the game the winning condition could refer to the number of regions an
agent has contributed. In an iterated version of the game, there might be penalties for
not completing the picture and prizes to every agent, proportional to the contribution
of the agent to the completed picture.

Figure 1 shows an initial configuration for this game, with names assigned to the
agents. In Figures 1-3, we have separated regions by lines, which are not part of the
original map.

Agents can take turns in colouring the image, or they can operate concurrently,
possibly conflicting on a same region, in which case the conflict is resolved (by accept-
ing only one contribution) according to some policy unknown to the agents. Agents
can follow different strategies, for example, non-deterministically choosing a region
as the next one for their colouring, or choosing to colour each time the region with
the minimal number of neighbouring region, or with the maximal area. In any case,
due to the flat ordering, the colour of a region cannot be changed once an agent has
placed its contribution.
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Fig. 1. An initial configuration for the 4-colour game.

Figure 2(a) shows a configuration after 8 turns, and Figure 2(b) a final configura-
tion reachable from the first, in the case that the alphabetic order determines agents’
turns, and each agent chooses non deterministically the next area to color.

(@) (b)

Fig. 2. A possible state of the game after 8 moves (a),
and a final configuration (b), when all agents follow
a non deterministic strategy.

Figure 3(a) shows a configuration, after 14 moves, from which the game cannot
be completed, in a different instantiation of the game for the same initial map and
the same colours. Here, each agent follows the strategy of selecting each time among
the available regions with the minimal number of neighbours. The numbers in the
area represent the number of neighbours for each area. The same strategy achieves
success for the simpler map of Figure 3(b).
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(a) (b)

Fig. 3. A configuration from which the game cannot be completed (a),

and a final configuration (b), for a strategy choosing regions with fewer neighbours.

The second case we consider is one in which different travel agents cooperate to
label pixels corresponding to hotels in a thematic map with labels composed of four-
tuples over the alphabet X = {({l,m,h} x [0..1])*} U {7}. The letters stand for low,
medium, high and the tuples are formed with judgements on the quality of service,
view, comfort, food. T indicates the absence of judgement, and the ordering on ¥ is co-
herent with ordering on judgement components, i.e. ((x1,71), (22, J2), (z3,J3), (z4, 1))
< ((y1,1), (Y2 82), (Y3, 73), (ya,44)) if and only if jx < iy for k = 1,...,4. Different
agents can be more qualified in different sectors, so that the second component of each
pair in the label indicates the level of qualification for each argument. Each agent
receives a copy of some region of the initial picture, with an indication of the positions
to fill. These copies may be different, in that agents may not be requested to visit
all hotels, but consider only some of them. Agents can thus operate independently
of one another. The construction of the final picture is managed by a central agency,
receiving the judgements of the individual agents in the form of copies of the original
regions annotated with judgements. Figure 4 shows the independent judgments, and
their composition, of agents A and B visiting different, non disjoint, regions of the
map. Instead of repeating the qualification for each position, we have indicated the
levels for each agent. Two hotels have been judged by both agents, who disagree on
the quality of service for the hotel located at (2,6) and on the quality of comfort for
that at (4,4). In the composition one considers that A is more qualified for judging
service and B for comfort.

Finally, the case of two agents remotely cooperating through whiteboards can be
modelled in the following way. Each agent can directly manipulate its whiteboard,
and transmit parts of it to the collaborating agent, possibly letting available for
modifications some of the figures it produced. In this case one defines ¥ = ¥y U
Yo U{r}, with { = {¢/ | @ € ¢}, with an ordering defined by the following rule:
(z,y) eE< <= (z =7)V(z € g Ay € X), so that a primed colour is one which
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cannot be changed. In this case, a same zone can be modified indefinitely until an
agent places a lock (i.e. a primed version of the colour) on it.

A(.7,3,5,8) B(.6,.4,.9,.7)
(hl,
m,m)
(ml
\Uhl) Lh)
(ml, hil,
r(wmm‘) r;".m) Eyh)
01
rn,h)
{m,
Ih)
thl,
rn,rm)
(.l
1]
(m.l, hl,
[ulip] h.hy
sup(AB)
(HR
En,h)
(ml,
1h)

Fig. 4. The two independent judgements of the two agents
and their composition.

4. Overlapping of pointed pictures

We now provide a formal model of computing with pictures, based on the exis-
tence of partially ordered alphabets, restricting the notion of pointed word proposed
in [2], so that orientation (and consequently rotation) is not considered. This model
accommodates the intuition of cooperative and concurrent construction of pictures
discussed in Section 3, which supports the introduction of a uniform monoidal struc-
ture on words of any dimension.

We first recall the definition of meet-semilattice.

Definition 1 (meet-semilattice). A complete meet-semilattice L = (L, <, A, L)
is a partial order with greatest lower bound for any non-empty family of elements, A.
The bottom element is denoted by L.

A complete meet-semilattice monoid is a monoid (L,e,1) such that the prefix
relation between its elements (as usual defined as s < ¢ iff there exists u € L such
that s e w =t) is an order and induces a complete meet-semilattice structure.
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Let ¥ be a partially ordered finite alphabet, structured as a complete meet-
semilattice with bottom element denoted by 7. X can be used to build a meet-
semilattice of pictures II with monoidal structure'. For the sake of understandability,
we start with 1-dimensional pictures, where the monoidal structure can be thought
of as a generalization of strings concatenation.

Definition 2 (Pointed string).

1. A string w on ¥ is a function w : Z — X, where Z is the set of integer numbers
and w is almost everywhere equal to 7.

2. A pointed string (w, x.,z;) is a string w with two designated positions z, and
x4, called entry and exit respectively, which can also coincide.

3. A translation t;, of (w,z.,x) by k positions is a pointed string ty ((w, Ze,z¢)) =
(w', 2L, ), where w'(z) = w(x — k), 2, =x. — k, z}, = 2+ — k.

Non-transparent symbols need not be contiguous in w. This reminds of partial
words, where holes may appear in finite strings [1]. Rather than indicating any symbol
in the current string, 7 indicates a position which can be occupied by any symbol
via an overlapping operation. In the rest of the paper the set of pointed strings is
considered modulo equivalence with respect to translations. This means that we will
use translations in the sequel, for both comparing and composing pointed strings.
The set of pointed strings PSy. (considered up to translations) is partially ordered
according to Definition 3. We use PS when X is understood.

Definition 3 (Partial order on pointed strings). (w1, x11,721) < (w2, T12, T22)
if there exists a translation by z1o—x11 such that (wh, )5, €hs) = te,,—zy, (w2, 12, T22)),
wy < wh as functions (i.e. wi(z) < wh(x),Va € Z) and iy = x11, 221 < 2hy. (Note
that only strings where x1; — 221 < 213 — @99 are comparable.)

Proposition 1. Let wo = (wg, 0,0), where wq is the string with value T every-
where. Then (PS,<,\,wo) is a meet-semilattice, with N\ denoting the meet operation.

We now define a family of overlapping operations eg, on PS, parametrically w.r.t.
a binary associative operation & : ¥ x X — X as follows:

(w17$117$21) L% (w27$12,$22) = (U%xu,x/zz)

with w(z) = wi(z) & wh(z), where ey : PS x PS — PS is canonically defined by
the pointwise application of &, and w} is the translation of we by 12 — 21.

Figure 5 shows three different instantiations of the overlapping operation for two
pointed strings o1 and o3. From left to right, we show the application of:

1. an operation &; which maintains the value of the first string in positions where
both strings are non-transparent;

L Actually TT can accommodate several monoidal structures.
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2. an operation &5 which preserves the second string;
3. an operation &3 which combines non transparent colours from the two strings.

The transparent positions are left understood. The characters inside the pixels
indicate the 0, entry and exit positions for each string. Note that, irrespective of the
adopted operation, all the resulting strings present the same designated positions.

o g,
[ [-To]¢] o] |
Oy *gq 0y Oy *gz O, Oy *pz 0

[TeTel T | LJlol | S |

Fig. 5. Instantiation of overlapping between pointed strings.

Proposition 2. Let & : ¥ x ¥ — X be an associative monotonic operation with
T as unit, satisfying the following:

Voi,0,0" €%, :
e 0 <o implies o1 & o0 < o1 & ¢’ (right monotonicity)
e 01 & (0 ANd')=01No & o1 Ao’ (right semidistributivity)
e 01 <01 & o (non decreasing property)

Then (PS, <, ey, A\, Wq) with the overlapping operation ey defined pointwise and co-
ordinatewise as above, is a meet-semilattice with a monoidal structure.

Remark 1. In the examples of Figure 5, &1 satisfies the conditions of Proposi-
tion 2, while &y does not. For &3, the conditions must be required for the relation
between the individual colours and their combinations.

The traditional operations of concatenation and anticoncatenation can now be
recovered by suitably fixing the entry and exit points in the strings.

Definition 4 extends these notions to the case of 2 (or more)-dimensional pictures.
In this case, positions are defined by vectors of coordinates, denoted Z'. For simplicity,
the graphical examples will exploit one- or bi-dimensional structures only.

Definition 4 (Pointed picture).

1. A picture m on X is a function 7 : Z™ — X, where Z is the set of integer numbers
and 7 is almost everywhere equal to 7.

2. A pointed picture (, T ., T 1) is a picture with two designated entry and exit
positions.
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3. A translation of a pointed picture (7, ¢, Z¢) by k also noted to,isa pointed
— — —
picture (7, 7", 7)) , where 7' (%) =n(@ — k), T\ =2 — k, x@ =7 k.

4. PPy is the set of pointed pictures on ¥ up to translations.

Definition 5 generalises to multidimensional pictures in the set PPs the notion of
partial order introduced in Definition 3. From now on, we use PP when ¥ can be left
understood.

Definition 5 (Partial order on pointed pictures). (7, 7., 7'¢) < (7', @/, @})

if and only if there exists a translation (=", 7", 7YY of (', T, T'}) such that m < 7"/

e’

. — —y = — = — =
as functions and 7, = 77,7 < T/, ie. (7", T, TY) =tz w7, T, 7).

In Definition 5, vectors are compared componentwise, i.e. 7 < ¥y © Vi7[i] <
v lil-

Proposition 3. Let mg = (7r0,6, 6), where my s the picture with all pizels trans-
parent. Then, (PP,<,A, 7o) is a meet-semilattice.

As before, we define a family of overlapping operations eg on PP, parametrically
w.r.t. a binary associative operation & : ¥ x ¥ — ¥ as follows:
(7Ta ?67 ?t) o0 (ﬂ—l? ?;7 ?2) = (7TH7 ?67 ?;/)

with 7(T) = 7(T) eg 7(T), where (7", T, TV) = t(z,—z0) (7, TL T}).

Figure 6 illustrates three instantiations of the overlapping operation for two pointed
pictures, according to the same conventions as for Figure 5.

o L

Ty *gq Mo Ty +g, Mg

Fig. 6. Instantiations of overlapping between pointed pictures.
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5. On the generative power of overlapping

Overlapping of pointed structures supports a generative definition of languages,
which differs from traditional, concatenation-based rewriting or parsing mechanisms
for strings, but which also provides a setting for languages of multidimensional words,
more comprehensive than plain extensions of concatenation to several dimensions, as
in [8].

A different approach to dealing with multidimensional words, based on the use of
transparent symbols and the possibility of shift and superposition, has already pro-
duced several computability results. Moreover, DNA computing with its notion of
complementarity, also can be characterized in terms of some & operation, as intro-
duced in Section 4.

We will therefore first revise these notions, and then introduce an original model
for rewriting exploiting the designated entry and exit positions of pointed pictures.

In [8], the notion of recognizable language is proposed, based on the equivalence of
several formal devices for accepting languages of two dimensional words, on alphabets
which do not contain the transparent symbol 7, but which present the special symbol
#. In particular, we show how languages recognized by tiling systems can be gener-
ated with the use of the overlapping operation. To this end we exploit the notion of
adult language, i.e. the subset of L(IIy) formed by words which can only rewrite into
themselves. We indicate the adult language originated from ITy as AL(IIy). We also
use a function cut, restricting a pointed word to the minimal word (i.e. forgetting
designated points) containing all non transparent symbols. We first recall the notion
of tiling system from [8].

Definition 6 (Tiling system). A tiling system is a 4-tuple T'S = (3,T,0, p)
with ¥ and T alphabets, © finite set of tiles (blocks of size 2 x 2 on I' U {#}) and
p: ' — X a morphism.

The language recognized by T'S is the set of pictures L(T'S) = p(L(©)) where
L(©) is the set of all pictures which present only the allowed blocks in ©. The set of
all languages recognised by tiling systems is called £L(7S).

Proposition 4. Let ¢, be the predicate which admits only pictures without the
symbol A. Given a tiling system TS = (X,T,0,p), there exists a set Iy of pointed
pictures on T' and an operation & on TU{A}, s.t. L(T'S) = cut(p(AL(Ily, e, )NP..4)).

Proof. We place a partial order on ' U {A} as follows: Vz € T',7 < z < A, while
all elements of I are incomparable with one another. We define Iy as follows: Iy =
{(0, (e1,€2), (x1,22)) | 0 € ©, ¢; € {1,2}, z; € {1,2} for i = 1,2, if § does not contain
#, e; and z; on positions not occupied by # otherwise}. For & : TU{A} xTU{A} —
I'U {A} we choose the following definition:

1) 7&x ==
2) z&r =z
3) y&kz = A
4) A&A = A

forx el y,ze TU{A}, y # 2.
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Note that pictures in Il do not contain 7 in the positions (z1,22), 1 < 213 < 2,
1 < 29 < 2. By considering all possible entry and exit positions, it is possible to
generate every path in a picture without changing the value of its positions. To
complete the proof, one can observe that L(IIy,eg) N ®., only contains pictures
obtained by overlapping elements in Il in such a way that the value of a position
either changes from 7 to some x € I' \ {7}, or remains the same. The adult language
obtained in this way contains all pictures where # form a rectangle filled with non-
transparent symbols. Hence, AL(IIy, eg,) NP, = L(O). 0

The notion of overlapping has an immediate reference to the notion of layer in [5].

Definition 7 (Superposition of layered strings). Let z,y € (XU {7})*. The
superposition zoy, is defined as follows. Let K = max(| = |,| y |). Let w’ = werK—Ivl
for w = z,y. Then z = x oy, with | z | = K, and z(i) = 2/(2), if 2'(i) # 7, ¥/ (2),
otherwise.

Proposition 5. Superposition of layered strings can be simulated by superposition
of strings.

Proof. The ¢ operation coincides with the overlapping operation eg,, of the two
pointed strings (x,0,0) and (y,0,0), according to the function &; from the example
in Figure 5. a

In [5] superposition is investigated as an abstract operation on languages, in partic-
ular studying properties of closure of families of languages in the Chomsky hierarchy
with respect to it. The families REG, C'S, RE are closed under superposition, and the
families LIN, C'F are closed under superposition with regular languages. These same
results hold for ey, after applying the morphism pointy : ¥* — PS(X), mapping each
string in ¥* into a pointed string with entry and exit position in the originZ.

Sticker systems [11] allow a double stranded DNA string, with single stranded,
sticky ends, to be prolonged by another if they have complementary portions of their
single stranded ends. To achieve this, complementarity between symbols of the DNA
alphabet is modelled through an involution operation. In particular, an involution
over a set S is a bijective mapping * : S — S such that a = a@. If @ = b, then we
say that a and b are complementary. The DNA alphabet Vpya = {4,C,G,T} is
such that A = T, C = G. We also introduce an amplification operation, analogous
to the polymerase chain reaction of DNA biochemistry, which allows the arbitrary
replication of strings. In our case, amplification produces versions of a string with all
possible non transparent positions for entry and exit.

Proposition 6. The behaviour of sticker systems can be simulated exploiting
overlapping, filtering and amplification.

Proof. Consider an operation & defined by
1) z&T = T(x,f)
2) z&y = A

2 Actually, due to the equivalence relation induced by translation, any morphism point, will do
for any z € Z.
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for y # T, on an alphabet X U {T () | w,z € ¥} U {A}.

We then introduce an ordering < such that 7 <z < A,z < T(, ) forallz,y,z € X
and any x,y € X are not comparable. The predicate ¢yt selects only strings where all
non transparent symbols are of type T, ,, and the predicate ¢, is defined as above.
By iterating overlapping, application of ¢. 4, and amplification, and finally applying
¢yt to select only strings corresponding to complete double strands, one obtains an
encoding of all the double stranded strings produced by a sticker system. a

In [11] it is shown that sticker systems generate all regular languages through weak
coding of the produced strings. Moreover, if control words are used to define the order
in which strings are attached to one another, and a demand is made on equality of the
control words used to make the upper and the lower strand grow, one obtains a weak
coding of recursively enumerable language. The distinction between upper and lower
strand can be simulated by considering whether a string from Il is used as first or
second argument of the overlapping. Finally, for the case when the control words can
be different, but have the same length, one obtains, through weak coding, a family
of languages which is strictly comprised between REG and RE. Again, the control
word mechanism can be applied to the simulation process based on overlapping of
pointed strings.

We can observe that not all forms of bio-inspired operations can be simulated in
this way. In particular, we observe that an analogous of the superposition operation
from [5], extended in [3] to define Watson-Crick superposition, cannot be simulated
with an overlapping operation conforming to the conditions of Proposition 2. In [3],
Watson-Crick morphisms over the alphabet V' are introduced as involution over V*.

Definition 8 (Watson-Crick superposition). Let 2,y € 3" be two non-null
strings on .. The Watson-Crick superposition operation, denoted by ow g, is defined
as follows: z ow g y = {z € X1 | one of the following conditions is satisfied:

1. 3i such that (Jz| —i+1 <|y|) AND
(oli-|2]) = yTI-ToT = 1]) AND (= = aigllal =7 T 1Ty}
2. 3¢ such that (|z] —i+1 > |y|) AND
(eli-ii + ly]-] =) AND (= = 2);
3. 3¢ such that (Jy| —i+ 1 < |z|) AND
(at.|yl 1] = yli-Tyll) AND (= = y[T.4 = TJu);
4. 3i such that (Jy| —i+ 1> |z|) AND
(x = yli..i + |z| — 1)) AND (z = y[1..i — L]x(y[¢ + |=|.-|lyl]) }-

Intuitively, this corresponds to overlapping the two stranded strings so that they
have a common part and completing the upper string with the complement of the
lower string in positions not covered by the upper string.

Proposition 7. There exist Watson-Crick morphisms which are not realizable
through operations complying to Definition 3.
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Proof. In order to simulate Watson-Crick superposition through overlapping, we
would need to assume X to be self-involutive, each element to be not comparable with
any other and the operation & to be defined as follows:

1) z&r =2
) t&r =T
3) 2&T =z
4) x&y = A

forx e X, y #7.

However, such a definition of & would violate the non decreasing property of
Proposition 2, as it would require x < T and T < x. But since < is a partial order,
we would have x = T, which is in general not true. O

Proposition 8. The overlapping operation can simulate rewriting of reqular gram-
mars.

Proof. Let G = (NT,T, S, P) be a regular grammar. Let ind : P — N be an
indexing of P. For each symbol X € NT, we replace it with symbols (X, p) for all p
such that p is the index of a rule (X,~). For each symbol a € T, we replace it with
the symbol (a,p) for all p such that p is the index of a rule (X,a8). We define an
ordering on NT U T through (A4,¢) < (a,r) for all (A4,q) € NT, (a,r) € T (in such
cases we also write NT < T'). For each rule (X — «) € P of index p, we introduce
in ITy the pointed strings (7',1,| v |), where +' is obtained by replacing the symbols
in «v with their indexed versions. Finally, we add to IIy all the elements from 7" and
all the elements (S, q) from NT. The operation & is now defined by (7&x = «x for all
x € NTUT, (X,n)&(a,n) = a, (X,n)&(b,m) = A for m # n, y&z = A for all other
cases. One observes that L(G) = cut(proj(L(Ily) N ®,)), where proj removes the
indexes from the symbols in NT UT. a

As an example, consider the grammar G = ({S, A}, {a,b,c}, S, P), where P =
{(§ — a9), (S — bA), (A — bA), (A — ¢)}). Applying the construction above,
we obtain the set Iy = {(S5,1), (S,2), (a,1)S(1), (a,1)(S,2), (b,2)(A,3), (b,2)(A,4),
(b,3)(A,3), (b,3)(A,4), (c,4)}, where the entry and exit positions follow the conven-
tion above.

The possibility of going beyond regular grammars is constrained by the fact that
overlapping cannot create intermediate positions between two adjacent ones, which
is what grammars beyond regulars need to do. On the other hand, it is possible
to augment alphabet elements with natural numbers, so that the space needed by
a word would be precomputed. This calls for mechanisms such as those of 2-level
grammars [23], where a high-level scheme is used to generate specialized versions of
grammar rules, or attribute grammars, by considering in the language only symbols
with certain values of attributes.

In particular, consider the set of rule schemes
{(S,n) = 771 (A,n),

(AvM) - (AaM - 1)aa
(A,0) — (SB,n),
(SB,n) — (B,n—1)r"" 4
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(B,M) —b(B,M —1),

(B,0) — b, }

where n is instantiated to a constant and M to all possible values between 0 and n.
We codify these rules into a set Iy as before. In particular, any string 7™ A presents
the entry point on the first 7 and the exit point on A, all strings Aa present entry
point on a and exit point on A, the string SB presents entry and exit points in 0,
the string B! entry point on the last 7 and exit point on B, the string bB entry
point on b and exit point on B, and the string b entry and exit point on b. We define
an ordering given by NT < T, and & as follows:

1) 7&x = x forx € NTUT

2) A&a=a
3) B&b = b
4) x&y = A otherwise

Now, one has cut(proj(L(Ilp) N ¢a)) = {a™b™ | n > 0}.

6. Conclusions

Computation on multidimensional words is becoming standard practice for cur-
rent technology, both for multimedia applications and for representing evolution of
distributed states. In general, ad hoc methods have to be devised for working on
different numbers of dimensions or for modeling the semantics of such computations.

We have proposed a general setting for describing computations on multidimen-
sional words, which can be parameterized to any number of dimensions, and which im-
poses some form of consistency on the contributions provided by independent agents.
Agents can cooperate in the construction of words defining the result of a computation
only on designated positions. We have shown the approach at work on some concrete
examples, and discussed its relations with some devices from formal language theory.

Note that, while less powerful than the original proposal of gluing of pointed
pictures with orientation, the operation of overlapping is still able to generate the
same set of pictures as gluing, provided that we preprocess the pictures in a set Il
to produce a set IIj, which contains all the rotated versions of the pictures in IIy plus
a finite set of tiles which allow moving exit points around.

Drawing inspiration from forms of composition of different contributions in such
a way that each intermediate state of the computation is "more defined” than the
previous one, we obtain an interesting algebraic structure. As a matter of fact, the
meet-semilattice monoid structure is a first step to build an enriched categorical set-
ting [13, 22], which can also accommodate a logical system, very close to that as-
sociated with a topos. Such a setting has been used to model concurrent systems
[12] according to the intuition by Milner [18]. The logical language corresponding to
this structure can be used to filter out moves which cannot contribute to reaching
a desired final state. Future work will investigate the properties of the logic defined
from the enriched structure and will proceed on a more systematic basis to the explo-
ration of the computational power of the approach, also considering its components in
isolation, viz. ordering of alphabets, use of overlapping, designated positions, filters.
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