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Abstract. The paper presents a new method for generating a class of S-type

nonlinear current controlled negative resistances. The presented method can be

used to obtain a large number of nonlinear resistances. We apply the method for

a negative resistance device, using bipolar transistors, described by theoretical

characteristics and we compare the results with the theoretical specifications.

A bipolar negative resistance single mode oscillator model is built. Results

are obtained by numerical integration of the differential equations using a new

PSPICE method.

1. Introduction

The paper presents a systematic method for generating a class of S-type current-
controlled (CC) negative resistance (NR) [1–11]. A considerable research effort exists
with regard to the steady-state characteristics of multimode oscillations based on
negative resistance. Because of complexity analytical models for nonlinear negative
resistance are difficult and rare [1–11].

Section 2 presents the main characteristics of the S-type structures that can be
used to design a negative resistance.

In Sections 3 and 4 we present necessary conditions to build a negative resistance
(NR) and an example of negative resistance obtained with the presented method.
PSPICE computational method for single mode oscillations is presented in Section 5.
Finally in Section 6 we present simulation results and conclusions. The presented
method can be used to obtain a large number of CC-NR nonlinear resistances.
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We apply the method for a negative resistance device, using bipolar transistors,
described by theoretical characteristics and performances and we compare the results
with the theoretical specifications.

2. S-Type nonlinear CC-NR structures

The presented structures are classified in three categories: Basic Structure (BS);
Polarization Structure (PS); Negative Resistance Structure (NRS).

The basic structure of this algorithm is presented in Fig. 1 and can be defined as
a three-pole circuit characterized by:

v = g (i) , i > 0. (1)

The functions f (v) and g (i) must have the following properties:

1. Functions g (i) must be bijective; and, therefore the inverse function f (v) =
g−1 (i) exists;

2. Functions g (i) and f (v) must be derivable and have the first derivative contin-
uous for ∀ i > 0.

Fig. 1. Basic structure for CC-NR.

This structure can be a BJT, JFET or MOSFET transistor, a circuit with several
transistors, an operational amplifier, etc. The general negative resistance structure
is shown in Fig. 3. The polarization structures (PS) is presented in Fig. 2 and must
satisfy two conditions: the voltage condition and the current condition.

The voltage condition states that:

v2
∼= v3. (2)

This condition is easily fulfilled in practice due to the current sources (Fig. 1).
The current condition can be fulfilled in three ways:

ib2 = ib3, (3)

which is satisfied by using the current sources I1 as shown in Figs. 2 and 3,

ib2 ∼= 0 and ib3 ∼= 0, (4)
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which is satisfied when the base currents are almost negligible (MOS transistors), and

ib2 ¿ i4 and ib3 ¿ i1, (5)

which is fulfilled by the structure that uses two bipolar transistors.
Figure 3 presents the negative resistance structure.

Fig. 2. Polarization structure.

Fig. 3. The negative resistance structures.

From Fig. 3 we can determine:

v = v4 + v3 + R (i1 + ib3 − i4 − ib2)− v2 − v1. (6)

Using (2) or (3) or (4) we have:

v = v4 + R (i1 − i4)− v1. (7)

From Fig. 3:

i1 = I − i > 0 ; i4 = I + i > 0. (8)

If we attach the characteristically equations for the two base structures:
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i1,4 = f (v1,4) or v1,4 = g (i1,4) , (9)

we obtain:
v (i) = −2Ri + g (I + i)− g (I − i) . (10)

From (8) we have the condition |i| < I. Using now equation (10) we can observe
the following properties: Characteristic is zero in origin: v (0) = 0; Characteristic is
odd: v (−i) = −v (i).

3. Conditions for NR

In (10) if we differentiate v (i) relative to the current i we obtain the following
expression for the negative resistance we search:

RN (i) =
dv (i)

di
= −2R + g′ (I + i0) + g′ (I − i0) . (11)

Usually the negative resistance must have values in a specified interval. We must
find the proper value for i that satisfies the following condition:

RN (i0) = −2R + g′ (I + i0) + g′ (I − i0) < 0. (12)

The resistance given by (11) is odd, therefore symmetrical, so if RN (i) is negative
when i = i0, then it will also be negative for i = −i0.

We can introduce supplementary conditions:
1. It’s obvious that g′ (I) < R and RN (0) < 0.
2. There is only a single peak point in the (I, V ) interval, denoted(Im, Vm). As

the characteristic is odd, we have another point, (−Im,−Vm), that defines a negative
resistance.

3. There is also the shape condition: a negative resistance for i = I , i = −I is
desired, i.e. v (I) > 0 and v (−I) < 0 or equivalently:

g (2I)− g (0) > 2RI. (13)

4. A bipolar negative resistance

The particular structure we present is obtained by using bipolar transistors as is
shown in Fig. 4 [5].

The portion between the emitters of T1 and T4 may be closed by a capacitor,
a series resonant LCR network such as a quartz crystal. We will obtain a nonlin-
ear current-controlled negative resistance (CC NR) and is typical of commercially
available voltage-controlled oscillators (VCOs). The following models describes the
transistors T1 and T4:

i1,4 = f (v1,4) = IS exp
(

v1,4

VT

)
,
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v1,4 = g (i1,4) = VT ln
(

i1,4

IS

)
, (14)

VBE2
∼= VBE3 , (15)

and

v (i) = −2Ri + VT ln
(

IS + i

IS − i

)
, (16)

where R has units of ohms, I of amperes, and VT of volts. From (16) we have the
condition |i| < I, obtained from existence of logarithm function [5].

Using equation (16) we can observe that: the characteristic is zero in origin:
v (0) = 0 and v (−i) = −v (i).

In (16) if we differentiate v (i) relative to the current i we obtain the following
expression for the negative resistance we search:

RN (i) =
dv (i)

di
= −2R +

2VT

IS

1

1−
(

i
IS

)2 , |i| < IS . (17)

We obtained a special class of negative resistance.
Observations:

a) CC-NR has a pole in i = ±IS .

b) For |i| < IS , RN (i) = RN (−i).

c) For CC-NR some important values are: i = 0, v (0) = 0, RN (0) = −2
(

R− VT

IS

)
.

d) To obtain a local maximums RN (i) = 0 there

Im1,2 = ±IS

√
1− VT

RIS
,

Vm1,2 = −2RIm1,2 + VT ln
(

IS + Im1,2

IS − Im1,2

)
. (18)

To obtain a negative resistance:

RN (0) < 0,

or

−2R +
2VT

IS
< 0 and

VT

IS
< R. (19)

This is the condition for current controlled negative resistance existence.
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When we will build the oscillator based on the CC-NR using a capacitor, a series
resonant LCR network or a quartz crystal we will obtain conditions more restrictive.
Conditions can be obtained based on a Kryloff and Bogoliuboff, van der Pol and
harmonic balance method [1] using nonlinear ordinary differential equations theory
[1–11].

Fig. 4. Negative resistance using bipolar transistors.

5. PSPICE computational method for single mode ECAM

PSPICE has become one of the most well known circuit analysis programs. This
paper presents new methods of simulating the algebraic functions as well as the solving
of non-linear differential equations.

The following aspects are presented: PSPICE subcircuits achievement for simu-
lating algebraic functions, integrated circuits simulation and non-linear differential
equations solving [12].

Results are obtained by numerical integration of the differential equations using a
new PSPICE method.

For showing the way that PSPICE works in simulating algebraic functions we will
use the circuit from Fig. 5 and equations:

E3 = E2, V4 = ln Vi. (20)

Fig. 5. Function generation subcircuit.
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If the voltage commanded source E4 is:

E4 = 1012 (E3 − E2) , then E3 − E2 =
E4

1012
. (21)

If we consider that E2, E3 are much bigger than E4

/
1012, we obtain:

E3 = E2. (22)

Using PSPICE there can be generated a set of algebraic functions using the circuit
from Fig. 5.

This idea is based on the following presumptions:

a) E2 and E3 have a polynomial dependence for Vi and E4;

b) E4 = F (Vi).

It is possible that an equilibrium is obtained.
For example, if the output voltage E4 must be:

V4 = ln Vi, or Vi = eV4 , (23)

where Vi is the input voltage, if we impose:

E3 = Vi, (24)

we obtain:
Vi = eV4 , or V4 = ln Vi. (25)

Using the same method there can be generated also other algebraic functions that
can be represented as a polynomial decomposition.

Integration simulation is based on the dependence between the voltage and the
current of a capacitor. The circuit that corresponds to this function is represented in
Fig. 6. R4 is used in parallel with the capacitor to allow to achieve the static points
at the start of the PSPICE algorithm. Its value must be as big as possible in order
to have no influence in the function of the circuit.

The loading current of the capacitor simulated by the current source F4, com-
manded by the voltage source Vi (where R3 = 10 kΩ) is:

F4 =
Vi

R3
. (26)

The V4 voltage can be written:

V4 =
1
C4

∫
F4dt. (27)

If E5 = V4 and C4 = 100 µF, eq. (8) becomes:

V5 =
∫

Vidt. (28)
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With the help of the C4 capacitor we can control the initial conditions for inte-
gration.

Fig. 6. Integration subcircuit.

In the literature exists a multitude of algorithms for solving the nonlinear differ-
ential equations. An approach needs two aspects:

a) a good knowledge of the mathematical algorithm, for choosing the most appro-
priate algorithm to use;

b) the knowledge of a programming language for the implementation of the algo-
rithm.

The purpose of this paragraph is to present a new method, simple and fast, to
solve the nonlinear differential equations using PSPICE.

The equivalent circuit of single-mode is presented in Fig. 7.

Fig. 7. The single-mode ECAM.

Equation (16) is:

v = −a · i +
b

2
ln

(
1− c · i
1 + c · i

)
, (29)

where:
a = 2RC; b = 2VR; c =

1
L

. (30)

The nonlinear differential equation for the single-mode oscillator circuit is:

0 =
d2i

dt2
+

R− a

L

(
1 +

bc

R− a
· 1
1− c2i2

)
di

dt
+

i

LC
. (31)

With the notation,

ω2 =
1

LC
, β =

bc

a−R
, ε =

a−R√
L
C

(32)
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and the changing of variables:

i → X

C
; t → t

ω
, (33)

the relation (31) becomes:

d2x

dt2
− ε

(
1− β

1− x2

)
dx

dt
+ x = 0 (34)

and can be written:

d2x

dt2
= Ea + Eb + EcEa = −x2 d2x

dt2
; (35)

Eb = ε
(
1− β − x2

) dx

dt
; Ec = x

(
1− x2

)
. (36)

PSPICE has become the standard computer program for most electrical simula-
tion. Higher-level abstraction and hierarchy can be modeled using controlled sources
and subcircuits blocks. The nonlinear function applies only to the time domain.
PSPICE supports the polynomial sources. Functional models for single mode is pre-
sented in Fig. 8.

Fig. 8. PSPICE equivalent scheme for single mode nonlinear differential equation.

The integrator (INT blocks in Fig. 6):

Vc (t) =
1
C

∫
ic (t) dt + v∞ (37)

is used in PSPICE to model the capacitor. If

ic (t) =
Vi

R
, (38)
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with R = 10 kΩ and C = 100 µF:

Vc (t) =
∫

Vidt + v∞. (39)

If we have (EQ blocks):

E3 − E2 =
E4

1012
(40)

and:
E2,3 ¿ E4, E4 = 1012 (E3 − E2) (41)

giving:
E3 = E2. (42)

6. Results and conclusions

The SPICE simulation result proves the theory discussed. The curve is shown
for R = 488 Ω, I = 1.6 mA, and VT = 26 mV. The characteristic is represented for
(–1.6 mA, +1.6 mA) in Fig. 9.

v (i) = −976 · i + 0.026 · ln
(

0.0016 + i

0.0016− i

)
[V ] (43)

Fig. 9. Bipolar S-type CC-NR characteristic.

From Fig. 9 we can observe that the shape I−V characteristic of bipolar transistor
is approaching with a theoretical one. The maximum simulation error for our example
using bipolar transistors is 8%.
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Based on clear configuration, using polarization and based structures we build a
current controlled S-type negative resistance.

In this paper were introduced a new and improved PSPICE method for simulating
linear and nonlinear equations. A PSPICE method has been proposed to solve the
nonlinear differential equations.

Using the PSPICE program we obtain numerical results. Over 200 runs with
several initial conditions prove that we can have a stable oscillation for single mode.
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